
INSOMNIA: Towards Concept-Drift Robustness in Network
Intrusion Detection

Giuseppina Andresini
University of Bari Aldo Moro

Feargus Pendlebury
University College London

Royal Holloway, University of London
ICSI

Fabio Pierazzi
King’s College London

Corrado Loglisci
University of Bari Aldo Moro

Annalisa Appice
University of Bari Aldo Moro

CINI - Consorzio Interuniversitario
Nazionale per l’Informatica

Lorenzo Cavallaro
University College London

ABSTRACT
Despite decades of research in network traffic analysis and incredi-
ble advances in artificial intelligence, network intrusion detection
systems based on machine learning (ML) have yet to prove their
worth. One core obstacle is the existence of concept drift, an issue
for all adversary-facing security systems. Additionally, specific chal-
lenges set intrusion detection apart from other ML-based security
tasks, such as malware detection.

In this work, we offer a new perspective on these challenges. We
propose INSOMNIA, a semi-supervised intrusion detector which
continuously updates the underlying ML model as network traffic
characteristics are affected by concept drift. We use active learning
to reduce latency in the model updates, label estimation to reduce
labeling overhead, and apply explainable AI to better interpret how
the model reacts to the shifting distribution.

To evaluate INSOMNIA, we extend TESSERACT—a framework
originally proposed for performing sound time-aware evaluations
of ML-based malware detectors—to the network intrusion domain.
Our evaluation shows that accounting for drifting scenarios is vital
for effective intrusion detection systems.

CCS CONCEPTS
• General and reference → Evaluation; • Security and pri-
vacy → Network security; • Computing methodologies →
Machine learning.

KEYWORDS
Network Security; Machine Learning

1 INTRODUCTION
In their landmark paper, Sommer and Paxson claimed that the rea-
son machine learning (ML) had not yet been applied to intrusion
detection—despite successes in other areas—was because “[...] the
intrusion detection domain exhibits particular characteristics that
make the effective deployment of machine learning approaches fun-
damentally harder than in many other contexts.” [62].

In the decade since, with the widespread popularity of deep
learning, the use of Deep Neural Networks (DNNs) has emerged
as a valuable candidate for designing network intrusion detection
systems (NIDS) [3–6, 18, 47, 60, 73]. However, despite a number of
successes, many challenges still remain, and as our understanding
of the area grows, yet more challenges arise beyond those originally

outlined in Sommer and Paxson [62]. In this work, we tackle a set
of open challenges which limit the practicality of current methods:
the non-uniform distribution of network traffic over time, the high
cost of labeling, latency during model updates, and the lack of
explainability (§2).

Core to all these challenges is the notion of concept drift [49].
Many previous methods typically follow the assumptions of tradi-
tional approaches: that the distribution of traffic data is stationary.
Due to this, features which appear stable in the training data may
appear adequate for describing future network flows. However, this
i.i.d. assumption is invalid in modern network traffic environments
where malicious activities are often polymorphic and continuously
evolving as attackers adapt to defenses [28]. Due to this, new attacks
or evasion strategies appear and it becomes difficult to distinguish
between malicious and benign behavior [12, 23, 36].

To illustrate this, we apply a baseline vanilla DNN (Appendix A)
and Kitsune [47], a state-of-the-art NIDS based on an ensemble
of autoencoders, to a recently revised version of the CICIDS2017
dataset [26]. These approaches assume data is i.i.d. and do not
include a mechanism to mitigate the impact of drift. The two ap-
proaches identify almost zero attacks across the 3 days of test data
(Table 1), clearly demonstrating that a modern NIDS must be proac-
tive in the face of concept drift and adapt to changes in the distribu-
tion of network traffic characteristics [42]. However, designing an
effective adaptation mechanism is nontrivial and requires innova-
tions to feature learning, inference, and the ongoing operational
deployment of the system.

We believe deep learning-based approaches are a promising
starting point for developing NIDS that are robust to drift, since
the nonlinear activation functions of DNNs may allow models to
maintain their accuracy under drifting conditions, as originally
evidenced by Pendlebury et al. [54]. Additionally, DNNs are respon-
sive to incremental learning, which allows them to adapt to the
new data distribution without the need to restart training from the
entirety of accumulated traces [19].

In this paper, we propose INSOMNIA: a framework that ad-
dresses challenges to network intrusion detection in the presence
of drift. INSOMNIA uses a DNN as its central underlying classifier
and, to reduce the impact of latency introduced by model updates,
we use active learning [56] to update using only new points that
would maximize information gain. To avoid the high overhead of
labeling with a human oracle, INSOMNIA is semi-supervised, using

https://orcid.org/0000-0002-5272-644X
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/0000-0002-3878-2680

a Nearest Centroid Neighbor classi�er (NC) [20] to estimate labels
for the selected points (thus avoiding manual labeling in updates).

Finally, to understand how drift manifests in the dataset, we
use a permutation-based variable-importance measure [17, 27] to
provide global model explanations over time.

To evaluateINSOMNIA, we extendTESSERACT[54], a frame-
work originally proposed to remove experimental bias and perform
time-aware evaluations in the malware detection domain.

One key aspect ofTESSERACTis that it ensures temporally
consistent dataset splits, with the training data preceding the test
data, and the test data partitioned into consecutive time periods
of equal size (e.g., one month). To capture the performance of a
classi�er over time, it uses the Area Under Time (AUT) metric.

Applying TESSERACTto the network tra�c domain is not im-
mediate. Firstly, the time granularity at which attacks occur in
networks is much smaller, possibly in the order of minutes or hours.
Secondly, the data is not uniform over time, e.g., there is typically
less activity at weekends or at night, and there may be quiet periods
where no attacks occur at all. Thirdly, operating in such short time-
frames has implications on retraining, both in terms of processing
time and also in terms of labeling capacity, which should be taken
into account during the evaluation.

In summary, this paper makes the following contributions:

� We outline a set of open challenges facing modern ML-based
intrusion detectors (Ÿ2) and proposeINSOMNIA, a semi-
supervised approach that builds on active learning, label
estimation, and explainable AI in order to tackle them (Ÿ3).

� We extendTESSERACT[54] to the network intrusion do-
main and use it to evaluateINSOMNIAon a recently revised
version of theCICIDS2017dataset [26]. Our results demon-
strate the need to proactively address changing distributions
in network tra�c as INSOMNIAsigni�cantly outperforms
baselines that do not account for drift (Ÿ4).

Our study highlights current challenges and promising trends in
e�ectively addressing concept drift for network intrusion detection
with deep learning, while providing explanations that are funda-
mental for understanding �ndings and the behavior of models. To
foster future research, we release our code to the community (Ÿ7).

2 CHALLENGES AND MOTIVATION
We outline a number of remaining open challenges which limit the
practicality of existing solutions [e.g., 5, 47] in drifting settings.

Non-uniformity of data distribution over time. Crucially, NIDS
must handle the lack of uniformity in the distribution of malicious
tra�c traces. Attacks of di�erent types can start and stop abruptly
as di�erent adversaries launch di�erent engagements at di�erent
phases of the attack lifecycle [43]. This means that not all categories
of malicious behavior are represented uniformly across the training
data which is problematic for models that update incrementally or
in an online fashion. Note that this is in contrast to malware detec-
tion where, although new attacks do appear over time, successful
families tend to be ubiquitous [64].

Additionally, concept drift can even a�ect tra�c features which
are seemingly well-established. A common case is when benign
behavior, contrary to malicious behavior, exhibits a very gradual
drift as user habits change. In these cases it is not necessary to

relearn from the entirety of network tra�c traces, but identifying
which characteristics change and then tuning the NIDS to traces
which exhibit such changes.

DNN models should accommodate the appearance of new cat-
egories of behavior without losing inference capability on older
categories. A possible solution is to train a base DNN model on
historical labeled data and then update it over time to �t unla-
beled incoming traces via transfer learning [55]. In the presence of
zero-day attacks, the past model may be structurally extended to
incorporate new model branches [55].

Cost of labeling. Very accurate intrusion detection models are
commonly trained using supervised learning by processing large
amounts of labeled traces [5, 41, 73]. However, manually labeling
network tra�c is costly and, due to concept drift, models need to
be updated frequently with freshly labeled examples to maintain
continuously high accuracy over time.

Active learning query strategies [2] select a subset of new sam-
ples that, if manually labeled and incorporated into the training set,
would add the most information to the model, and are therefore the
most valuable samples to label. A common active learning query
strategy isuncertainty sampling[40] which selects the most �un-
certain� classi�cations (e.g., those closest to the decision boundary)
for manual labeling and retraining. The intuition is that these are
the most relevant for readjusting decision boundaries, which can
become blurred by drifting examples.

Pendlebury et al. [54] apply active learning with uncertainty
sampling to malware detection in which a human oracle is queried
each `month' for manual labels with which the model is updated.
They follow estimates by Miller et al. [46] that an average company
could manually label 80 applications per day. In such a setting,
new malware variants take time to be developed and, for mobile
malware at least, there is a probation period where apps are vetted
before appearing in a marketplace. This means that the update
operation can be scheduled at longer intervals. However, for intru-
sion detection systems, network tra�c is highly diverse and can
�uctuate suddenly, requiring faster response times which can put
strain on labeling capacity [22].

Additionally, network tra�c traces may be acquired irregularly
over time which can compromise the e�ectiveness of scheduling
model updates at regular intervals. If very little tra�c occurs, com-
putation is wasted by updating the model with scant new infor-
mation. If a large amount of tra�c occurs, new attack categories
may be processed but not detected until they reappear in the next
interval. Such an occurrence can cause a sharp decrease in per-
formance. Alternatively, we propose usingcount-based windows
to update the model once a su�cient number of traces have been
acquired (see Figure 2).

Furthermore, to reduce the cost of using human oracles, manual
annotators may be replaced or supplemented with automated anno-
tation mechanisms that provide regular feedback at a very limited
cost [72], a strategy we explore in this work (Ÿ3).

Update latency. A further issue is the latency induced when up-
dating an intrusion detection model [44]. In principle, the new
model should be available in near-real time, i.e., before the subse-
quent tra�c trace arrives for classi�cation. In practice, the new

Figure 1: A block diagram showing the di�erent components and phases of the INSOMNIA framework: (1) models are trained
and initial explanations produced (2) the DNN provides predictions for incoming test objects (3) a subset of test objects are
selected for label estimation (4) the NC provides label estimates for this subset (5) models are updated with label estimates
and new explanations are produced. Phases (2)�(5) repeat during deployment.

model is only available after some delay, with the previous iteration
of the model being used on traces that appear in the meantime.

One solution to reducing the learning latency is the use of trans-
fer learning [51] in which a model trained to solve one task is
applied to another. In particular we can adopt�ne-tuning, a simple
application of transfer learning in deep learning [65]. In �ne-tuning,
a model is trained on data from the target distribution, but rather
than the weights being randomly initialized, they are pretrained on
data from a di�erent�but related�distribution. In the NIDS context,
this allows the model to adapt to the drifting distribution without
retraining from scratch, which would incur signi�cant overhead.

Explainability. Although deep learning techniques have been
widely used to obtain superhuman classi�cation capabilities, the
trained models are in most casesblack-boxmodels [35].

Models used for intrusion detection are no di�erent, and are
implicitly represented in numerical form as synaptic weights of the
network. It is generally di�cult, if not impossible, to interpret these
weights without further tool support. However, the interpretability
of intrusion detection systems is of fundamental importance to
understanding the decision of the model and informing downstream
actions on how to prevent evolving attacks.

Currently, the machine learning community is dedicating increas-
ing e�orts towards developing eXplainable Arti�cial Intelligence
(XAI) techniques for interpreting deep learning models [69]. A re-
cent study by Warnecke et al. [68]applied explainability methods to
provide explanations for DNN decisions in malware detection and
vulnerability discovery. In this work we consider applying XAI to
NIDSin a temporal setting, to explain how the black box is changing
over time to �t to new attack categories.

3 METHODOLOGY
In this section we presentINSOMNIA(Incremental training iNtrusion
SystemOver tiMe-stampedNetwork tra� Ic dAta), a semi-supervised

methodology that combines incremental, active, and transfer learn-
ing to overcome the challenges described in Ÿ2. Additionally, it
applies XAI to provide post-hoc explanations of how the model
changes over time to �t the appearance of new attack categories in
the network tra�c.

3.1 Overview
INSOMNIAinitially learns an intrusion detection model from a col-
lection of labeled historical network tra�c traces. It then continues
in an unsupervised manner, monitoring incoming unlabeled traces,
and adapting the model over time to �t the drifting conditions of the
network. The updates are facilitated by a learnt oracle mechanism
which produces class estimates (i.e., pseudo-labels) of new traces.
A block diagram ofINSOMNIAis reported in Figure 1.

INSOMNIAassumes that only a limited quantity of labeled traces
are available initially (acquired during a data collection stage) with
an abundance of unlabeled traces later acquired over time (when
new network tra�c traces arrive). Formally, the input is an ordered
multisetS of time-stamped network tra�c traces,

S = P¹xC•~Cº : C= 1•2• ” ” ” •<• ” ” ”Q•

wherexC is a vector of �ow-level tra�c feature values and~C is
the corresponding binary label denoting abenigntrace or anattack
trace. We assume that~C is known where1 � C� < , while ~C is
unknown whereC¡ < .

INSOMNIAoperates in three phases: an initialization phase, an
incremental learning phase, and an explanation phase.

In the initialization phase, the labeled traces are used to train the
intrusion detection model. Additionally, we train a distinct oracle
mechanism to estimate the true labels of the incoming examples.
This mechanism replaces the human oracle or external information
source commonly used in active learning [2, 7]. The two models are
distinct to ensure the predictive model is not a�ected by negative
feedback loops caused by training with its own predictions.

In the incremental learning phase, new unlabeled traces are
consumed consecutively and processed in batches of equal size. The
intrusion detection model and the label estimator are continuously
updated with the new traces which are unlabeled at inference time
and class-estimated before the model update.

After initialization and each incremental learning phase, an ex-
planation phase computes the global relevance of features to the
detection model's decisions to monitor how the model has updated
to �t the drifting characteristics of the network tra�c. In the fol-
lowing subsections we describe these three phases in more detail.

3.2 Initialization Phase
In this phase, we consider the initial< labeled traces that form
the training setD � S . We processD to train both the intrusion
detection and oracle models. As an intrusion detection model, we
train a DNN model. As the label estimator, we train a Nearest
Centroid Neighbour classi�er (NC) [66].

NC is an e�cient classi�cation algorithm that assigns a sample
to the same class as the training examples whose mean (centroid)
is closest to the new sample. We note that NC relies on a metric
learning strategy that takes advantage of the proximity between
samples to highlight hidden patterns useful for intrusion detection.
This learning strategy is in stark contrast to that of DNNs. The use
of NC for label estimation follows thecluster assumptionof semi-
supervised learning, i.e., that points tend to form discrete clusters,
and that points in the same cluster are more likely to share a label
than those that are not [32].

The two diverse learners, DNN and NC, provide complementary
predictive capabilities and we hypothesize that the NC can act as
an independent oracle labeling mechanism to better label traces
the DNN predicts with uncertainty as a form ofco-training[16].

In Ÿ4.3.3, we empirically verify the e�ectiveness of this hypothe-
sis.

3.3 Incremental Learning Phase
After initialisation, the DNN model classi�es new unlabeled traces
as eitherbenignor attack instances. As they are classi�ed, new
traces are aggregated one-by-one into batches of size?. Once a
batchX8 is complete, the incremental learning operation is triggered
to update the DNN model. This operation consists of three steps:

(1) An uncertainty set- US is constructed by selecting the
traces ofX8 which are assigned the least certain predictions
by the DNN model;

(2) Next, the training setD is augmented with traces of- US
pseudo-labeled using the NC-based oracle;

(3) D is processed to update the DNN model, as well as the
NC-based oracle.

To construct- U (we adopt theuncertainty sampling(US) query
strategy [54] to select points with the least certain predictions for
which labeling will provide the most new information. Speci�cally,
we determine the uncertainty of DNN classi�cations by consider-
ing outputs of the DNN's softmax layer. The lower the softmax
con�dence value, the more uncertain the classi�cation is. We select
the top f % most uncertain traces ofX8 to form - US . The trace
selection ratef is a user-de�ned parameter.

Next, traces in- US are labeled with the current NC-based oracle
and added toD , which is used to update both the DNN model and
the NC-based oracle. The DNN model is updated with the �ne-
tuning operation that adapts the weights of the previously trained
DNN model to the potentially drifting distribution ofD .

The class centroids of the NC-based oracle are recomputed on
D . This is a form ofself-learning[74], in which a classi�cation
algorithm learns from a labeled dataset that is augmented with
new examples labeled by the classi�er itself. By retaining the initial
training examples that have ground truth labels, we mitigate the po-
tential catastrophic e�ects introduced by low quality pseudo-labels.
This also ensures new traces are not inordinately more relevant
than older traces, to avoid unlearning previous attack behavior.

Note that the update operation introduces a learning latency
until the new DNN is ready. Therefore, in the interim, the old DNN
model (i.e., the model being updated) must be used to classify the
incoming traces, which may induce a temporary performance decay
relative to the amount of drift.

3.4 Explanations Phase
INSOMNIArelies on XAI to provide post-hoc explanations of how
the DNN model adjusts over time to �t the appearance of new
attack categories in the network tra�c.

We use the moDel Agnostic Language for Exploration and eXpla-
nation (DALEX) [11, 15], a framework that implements techniques
for understanding both the global and local structure of predictive
black-box models. InINSOMNIA, we integrate the global explana-
tion methodology, which allows us to explain the behavior of the
DNN by measuring the global relevance of di�erent features (i.e.,
observed tra�c characteristics).

DALEXuses a permutation-based variable-importance measure
to quantify the relevance of each feature [17, 27]. For each feature,
its e�ect is removed by resampling or permuting the values of the
feature and a loss function compares the performance before and
after. Intuitively, if a feature is important, randomly permuting its
values will cause the loss to increase.

By inspecting how the feature importance changes over time,
we can identify those that remain relevant, as well as those that are
redundant. Importantly, by analyzing what features increase in rele-
vance as new attack categories appear, we can identify the features
that contribute the most to the characterization (and detection) of
each attack category.

4 EVALUATION
In this section we perform a time-aware evaluation of the detection
and explaination capabilities ofINSOMNIA1 on CICIDS2017, a
recently revised network intrusion dataset [26, 58]. To this end,
we extend theTESSERACT[54] framework to support time-aware
evaluation of network intrusion detection tasks. In particular, we
add functionality to temporally partition data using count-based
windows rather than time splits used in the original work, as well
as to compute the impact of latency during model updates.

1See Appendix A for DNN architecture, implementation, and hyperparameter tuning.

(a) Number of �ows per hour

(b) Window length in minutes (c) Category distribution

Figure 2: CICIDS2017overview. Figure 2a shows the number of tra�c traces per hour. Figure 2b shows the total time spanned
by count-based windows (in minutes) for the incremental phase. Figure 2c shows the overall distribution of traces per attack
category. The initialization phase covers days 1 and 2 for a total of < = 693•650labeled traces (block labeled 0). The incremental
phase covers days 1, 2, and 3 spanning consecutive windows of ? = 50•000traces (blocks 1-28).

4.1 CICIDS2017Network Tra�c Data
TheCICIDS2017dataset [58] from the Canadian Institute for Cy-
bersecurity provides data collection of a complete network testbed
of di�erent devices and operating systems, in which separate victim
and attacker networks communicate over the Internet. Communica-
tion covers common network protocols, including HTTP, HTTPS,
FTP, SSH, and SMTP. Pro�ling agents, trained beforehand on net-
work events generated through genuine human interactions on the
network, were used to generate realistic benign tra�c, while attacks
were identi�ed according to a 2016 McAfee report [45]. Attacks
include brute force attacks, Heartbleed, botnet communication, sev-
eral variants of DoS and DDoS, in�ltration, and web-related threats.
In total, the dataset contains 51.1 GB of PCAPs spanning 5 days.
The data comprises 2.8 million time-stamped tra�c traces that are
divided into 15 attack categories. Individual traces are represented
by a feature vector of 79 high-level statistical characteristics, manu-
ally engineered by intrusion detection experts and extracted using
the tool CICFlowMeter [24, 39].

In this work, we use a re�ned version ofCICIDS2017recently
released by Engelen et al. [26]. This version addresses �aws in the
original dataset related to tra�c generation, �ow construction, fea-
ture extraction, and labeling that severely undermine its correctness,
validity, and overall utility. The new version removes meaningless
artefacts, dataset errors, and mislabeled traces, retaining 2,524,767
timestamped traces between 00:01 July 3rd, 2017, and 22:02 July
7th, 2017, and 72 features. As expected in real deployments, the
benign class is the majority class with 2,090,918 traces (82%) labeled
as benign and 433,849 traces (18%) as attacks. However, we remark
that attacks will be even less prevalent in the wild, so it is necessary
to take into account the base-rate fallacy [10] when interpreting
the results. Figure 2a shows the rate of traces per hour illustrating
daily peak tra�c between 12:00 and 22:00.

4.2 Experimental Setup
We consider the �rst two days of the dataset as the labeled training
set processed during the initialization phase ofINSOMNIA(Ÿ3.2).
The remaining three days are used as the test data, processed as
unlabeled traces during the incremental learning phase (Ÿ3.3).

Figure 2b shows the length of each count-based window in min-
utes, with a median length of 61.2 minutes. The two large peaks
correspond to windows 10 and 18 which aggregate largely night-
time benign tra�c�as there is less activity, more time passes before
the windows are �lled.

The window size? = jX8j is set to 50,000, while the initial
training set size< = jDj is set to 693,650 to cover all traces in days
1 and 2. Figure 2c visualizes the distribution of traces across the 15
attack categories. We note that unseen attacks, appearing over time
and causing concept drift, are those handled during the incremental
learning phase (window 1 onwards). For the uncertainty sampling,
we investigate the e�ects of varying the traceselection ratef , with
values of 20%, 50%, and 70%.

We evaluate the detection performance of the DNN model in
terms of average� 1 and AUT(� 1).2 � 1 is the harmonic mean of
precision and recall, where precision ()%• ¹)%¸ �%º) measures the
proportion of correct positive predictions and recall ()%• ¹)%¸ �# º)
measures the model's ability to detect all attacks. AUT(� 1) is the
area under the curve of� 1 computed over time [54] and is a time-
aware metric speci�cally designed to capture the time decay of a
security classi�er.

We consider two scenarios; an ideal scenario where there is no
learning latency during the incremental updates, and a more re-
alistic scenario where this latency is taken into account.� 1 and

2More precisely, we use AUT(� 1, 28150:), where150: denotes count-based blocks of
50,000 samples�in contrast to the original time-based notation where12< would
denote a year of month-sized periods, for example. For brevity we use the shorthand
AUT(� 1) throughout.

Table 1: Performance and total TIME of No-Update, Kitsune [47], US+Oracle, and INSOMNIA (with NC) for di�erent f at 20%,
50%, and 70%.

Selected Method � 1 (%) AUT(� 1) � 1-D(%) AUT(� 1)-D TIME (min)

�
No-Update 0.0019 0.035 0.0019 0.035 �
Kitsune[47] 0.0113 0.009 0.0113 0.009 �

20%
US+Oracle 74.57 32.73 74.40 32.61 445.24
INSOMNIA 69.83 41.64 69.82 41.56 262.25

50%
US+Oracle 81.62 36.10 81.46 35.99 517.92
INSOMNIA 80.88 42.39 80.40 42.17 428.39

70%
US+Oracle 90.85 44.99 90.74 44.68 587.96
INSOMNIA 64.90 29.10 64.90 29.09 502.41

Figure 3: � 1 (%) of INSOMNIA computed on all traces across
the consecutive windows at varying f of 20%, 50%, and 70%.
The grey spans correspond to windows in which no attacks
occurred and for which � 1 is unde�ned.

AUT(� 1) are measured assuming the ideal scenario, without learn-
ing latency, where the DNN is �ne-tuned at the end ofX8 to classify
all traces inX8̧ 1. In the realistic scenario, new incoming traces from
the subsequent windowX8̧ 1 will already have been encountered
before the �ne-tuning procedure of the DNN model has completed
for window X8. To account for this delay, we present results for� 1
and AUT(� 1) where the previous model is used up until the new
model is ready, denoted as� 1-D and AUT(� 1)-D respectively.

Finally, we evaluate the e�ciency ofINSOMNIAby measuring
the runtime taken to process all windowsX8 (denoted as TIME).
All experiments were executed on a Linux machine equipped with
an Intel(R) Core(TM) i7-9700F CPU @ 3.00GHz and memory RAM
of 32GB using a single GeForce RTX 2080.

4.3 Results
We report results considering several axes of performance: correct-
ness of the predictions, quality of the uncertainty sampling strategy,
accuracy of the label estimator, and utility of the explanations.

4.3.1 INSOMNIA Performance.Table 1 displays the results of our
experiments comparingINSOMNIAagainst baselines with either
no update, or a perfect update (using ground truth labels). For
the uncertainty sampling query strategy, we compare results for
di�erent values of selection ratef : 20%, 50%, and 70%. These results
lead to several conclusions detailed below.

Comparison to baselines. We �rst compareINSOMNIAagainst
three baselines:Kitsune[47], and two variants ofINSOMNIA: No-
UpdateandUS+Oracle. No-Updatedoes not implement any incre-
mental learning phase, instead it reuses the model learned during
the initialization phase to classify all subsequent traces.US+Oracle
implements the incremental learning phase using the uncertainty
sampling strategy, but relies on a human oracle to produce ground
truth labels in place of the NC-based oracle. This represents an
ideal upper bound on performance.

No-UpdateandKitsune[47] both su�er from extreme perfor-
mance decay, completely failing to recognise attacks that arise over
time and were not encountered during initialization. While we
note thatKitsunewas not designed to withstand concept drift (and
rather focuses on orthogonal research problems such as constrained
resources), these results give empirical support to the idea that adap-
tation strategies such as incremental learning are important for
addressing concept drift in network intrusion data.

As expected,INSOMNIAdoes not outperformUS+Oracle, which
uses ground truth labels rather than class estimates. However, the
experimental con�guration withf = 50%has average� 1 very close
to US+Oracleand even outperforms it in terms of the temporal
AUT(� 1) metric. Signi�cantly, the performance ofINSOMNIAis
much closer to that ofUS+Oraclethan No-Update. This demon-
strates that active learning with pseudo-labels can closely approx-
imate performance with ground truth labels in scenarios where
labeling capacity is limited.

Impact of selection rate. Next we analyze the e�ect of the selec-
tion rate f on the performance ofINSOMNIA. The highest� 1 is
achieved withf = 50%, followed by20%, while f = 70%produces
the lowest performance.

This performance comparison is further depicted in Figure 3
which shows� 1-D of INSOMNIAover consecutive windows for the
three di�erent f . Notably,f = 70%performs signi�cantly worse for
windows 22�25. To explore the cause of this behavior, we analyze
the accuracy of the pseudo-labels generated by the NC-based oracle.
Figures 4a and 4b compare the overall accuracy (OA) and� 1 of
the label estimates computed for the 20%, 50%, and 70% selected
uncertain traces. From this we observe that the low� 1 of the label
estimator during windows 21�24 correlates to the poor performance
of the DNN during the same timeframe, wheref = 70%.

(a) Overall accuracy of NC for selected points (b) � 1 of NC for selected points

Figure 4: OA(%) and� 1 (%) of NC label estimations computed over the consecutive windows generated for the uncertain traces
selected with the US strategy. Metrics are collected by varying f among 20%, 50% and, 70%. The grey spans correspond to
windows in which no attack traces where selected by the strategy and for which � 1 is unde�ned.

While the low � 1 score of the label estimator in the preceding
periods seems to have little detrimental e�ect on the performance,
this is likely due to the extremely low prevalence of attacks during
these windows compared to the large in�ux of port scanning tra�c
received in window 22. We reason that port scans may be naturally
harder to distinguish from benign tra�c, but that the large volume
of port scans exacerbates the self-poisoning e�ect. Further analysis
of the label estimator accuracy is included in Ÿ4.3.3.

Learning latency and runtime. We note a slight decrease in
performance across all con�gurations when the learning latency
is taken into account (e.g.,� 1-D vs. � 1). This highlights how the
update mechanism ofINSOMNIAis su�ciently quick to avoid long
latency periods, and that the system is robust to the onset of these
periods when they do occur. We can conclude that latency does not
threaten the ideal performance ofINSOMNIA.

Similarly when considering runtime, we see that the total time
taken to complete updates (TIME) positively correlates with the
higher f , increasing the risk of latency periods. This behavior
is observed equally in the ideal scenario using a human oracle
(US+Oracle) as with our NC-based estimator. However we note
that our runtime calculations also assume that human-derived la-
bels are available as soon as the model needs them; realistically,
manually analyzing attack tra�c can be very time intensive, which
would further increase the latency ofUS+Oracle.

Figure 5 depicts the time spent per window on completing the
incremental learning operation for di�erent values off . Windows
marked with a red cross depict latency periods for which the model
for that window is �ne-tuned only after all traces from that window
have already been classi�ed (i.e., the new model is `too late'). As
expected, the total time and number of such periods increases with
f . On the other hand, as illustrated earlier, this does not necessarily
suggest a trade-o� between performance and latency with respect to
the selection rate: high values off may cause catastrophic feedback
loops due to the addition of low quality pseudo-labels.

4.3.2 US Strategy Performance.We also perform an ablation study
to inspect the e�ectiveness of the US strategy. We compare the
accuracy ofINSOMNIAto that of a variant (RS+NC) for which the
query strategy has been replaced with the Random Sampling (RS)

strategy [57]. The RS strategy randomly chooses traces to query
with the NC-based oracle. We perform the comparison atf = 50%.

The results depicted in Figure 6 show that the performance of
INSOMNIAwith US is superior to the RS strategy, independent of
the metric considered. This suggests that selecting traces with the
most uncertain predictions does indeed result in a more e�cient
update that increases the information gained by the model.

4.3.3 Oracle Performance.We also analyse how well the NC clas-
si�er supports the DNN as an oracle. To this end, we compare the
OA and� 1 per window on the traces selected with the US strategy
at f = 50%as classi�ed by the DNN model versus the NC classi�er.

Figure 7 shows the NC-based oracle can e�ectively improve the
accuracy of the most uncertain classi�cations yielded by the DNN
model (e.g., in windows 6�14 and 22�24). This shows that combin-
ing two learners with di�ering underlying concepts helps support
high-quality pseudo-labels which can preserve the robustness of
the DNN model over time. This avoids potential negative feedback
loops, which could cause self-poisoning if the DNN updated itself
using its own predictions. We emphasize that the relationship be-
tween the NC and the DNN are symbiotic�the NC relies on the
DNN to provide the most uncertain predictions and the NC sup-
plies estimates for corrected labels. The NC would not be able to
operate independently in the same context unless it was supported
by a human oracle to provide it with labels (or an alternative label
estimator) to mitigate uncertain predictions.

4.3.4 Dri� Explanation.Finally, we focus on explaining how the
DNN model changes over time as new attack categories appear. For
this analysis, we consider the DNN model learned withINSOMNIA
at f = 50%and we useDALEXto measure the global relevance of
features based on the predictive capability of the DNN for each
window. A signi�cant change in the relevance of one or more
features illustrates the DNN adapting to concept drift.

The heatmap in Figure 8 depicts the ranked feature relevance
for the top ten most relevant features per window.

We note that the featuresIdle MaxandProtocolare consistently
ranked in the top ten positions (darkest cells) over time, while
others gain relevance only with the appearance of di�erent attack
categories (cf. Figure 2c). Next we examine in depth how feature

(a) f = 20% (b) f = 50% (c) f = 70%

Figure 5: Computation time (in minutes) spent completing the incremental learning phase of INSOMNIA for varying f at 20%,
50%, and 70%. Crosses (�) indicate latency periods for which the �ne-tuning of the DNN model completes a�er all traces in
the current window have been acquired.

Figure 6: � 1 (%), AUT(� 1), � 1-D(%) and AUT(� 1)-D measured
per window with both INSOMNIA and RS+NCwith 50% of
traces selected with the US strategy and the RS strategy, re-
spectively.

relevance changes for two sequence of windows: windows 0�2 and
windows 22�23.

Windows 0�2. As shown in Figure 2c, the model is initially trained
on window 0 which contains only benign traces and attacks by
password bruteforcers:FTP�Patatorand SSH-Patator. Both FTP-
PatatorandSSH-Patatorattacks disappear in subsequent windows,
while denial-of-service (DoS) attacks appear withDoS Slowlorisin
windows 1 and 2, andDoS Slowhttptestin window 2.

Figures 9a�9c show the top ten globally relevant values identi�ed
with DALEXfor the DNN initialized on window0, �ne-tuned on
window 1, and �ne-tuned on window2, respectively. We note that
there is a signi�cant change in the relevance of several features
from window 0 to window 1 asINSOMNIAupdates the DNN model
to detect the newDoS Slowloristraces.

Slowloris is a DoS attack that relies on creating several partial
HTTP requests, keeping such connections open for as long as pos-
sible. Among relevant network features, one would then expect to
observe the "maximum time a �ow was idle before becoming active"
(Idle Max)3 to gain importance, as Figures 9a�9c depict. A similar
reasoning can be applied to the other three new tra�c features
(Protocol, Destination Port, andBwd IAT Std) that gain relevance

3A comprehensive mapping of feature names to their corresponding description is
available at https://github.com/ahlashkari/CICFlowMeter/blob/master/ReadMe.txt.

for recognizing these attack traces.Bwd IAT Total, which was al-
ready identi�ed as relevant in recognizing the bruteforce attacks,
increases in relevance too. Similarly, some features become less
relevant (i.e.,Idle Std, Bwd IAT Min, Bwd IAT Mean, andFwd IAT
Total) while others drop from the top features entirely (i.e.,Fwd IAT
Min andInit Win bytes backward).

Three new features (Min Packet Length, Flow IAT Min, andPacket
Length Variance) become relevant in window 2 as the model adapts
to the change in DoS strategy (fromSlowloristo Slowhttptest). The
top-four features (Idle Max, Idle Std, Protocol, andBwd IAT Min) do
not change their relevance, two of which (�3;4 "0G and%A>C>2>;)
became more relevant in window 1. This suggests these features
help the model stay stable in recognizing theDoS Slowlorisattack
as it persists into window 2.

Windows 22-23. Figure 2c shows port scanning activity (Port
Scan) appearing in a small number of traces at windows 20 and 21
(5 and 345, respectively), then signi�cantly increasing in volume
during windows 22 and 23 (37,512 and 48,501, respectively).

Figures 9d-9f show the top ten globally relevant values identi�ed
with DALEXfor the DNN �ne-tuned on windows 22, 23, and 24. We
note that the featureBwd Packet Length Min, which gains relevance
in window 22 (as the port scanning activity increases), retains
its relevance on windows 23 and 24, as port scanning activity is
sustained. A similar trend is observed forIdle Meanthat becomes
relevant in window 22 and maintains its relevance throughout
windows 23 and 24.

5 LIMITATIONS AND FUTURE WORK
The results of our evaluation highlight yet another important open
problem for NIDS: detection of stealthy, low-prevalence attacks.
INSOMNIAstruggles to detect the few instances of theIn�ltration
attack at windows 14�17 and we observe that maintaining sensi-
tivity to attacks with a very low base rate in the presence of high
volume attacks such as DoS is very challenging�as is generalizing
to attack categories of greatly di�erent character. While general-
izing across attack types remains a holy grail, future work may
consider ensembles that tackle di�erent attack types with separate
models. Additionally,INSOMNIA's update mechanism does not
have the opportunity to make use of knowledge learned from at-
tacks which occur wholly in a single window (e.g.,Brute Forceat

(a) Overall accuracy for selected points (f = 50%) (b) � 1 for selected points (f = 50%)

Figure 7: OA(%) and� 1 (%) of the NC-based oracle versus the DNN model. Metrics are computed on the 50% of traces selected per
window with the US strategy. The grey spans correspond to windows in which no attack traces where selected by the strategy
and for which � 1 is unde�ned.

Figure 8: Feature ranking map of the DNN model learned
with INSOMNIA at f = 50%. We plot the rank (1�10) of the
features (axis Y), which are ranked in the top ten positions of
the feature ranking determined with DALEX along the con-
secutive windows (axis X) processed over time. Window 0
covers the traces processed in initialization phase. Windows
1�28 cover the traces processed in the incremental phase.

window 11). Reducing the window size may help with this, however
it would also reduce the statistical support available each update.
While conceivably the DNN would be susceptible to catastrophic
forgetting [31] over long deployments, we already operate under
the assumption that the long-term accuracy of ground truth labels
is unreliable due to drift. Additionally, our NC aims to correct DNN
errors should forgetting occur.

As future work, we plan to explore howDALEX's explanations
may be used for feature selection, to identify more stable features
and improve the accuracy and robustness of the model. Additionally,
we plan to investigate the e�ectiveness of intentional forgetting
mechanisms, in order to maintain the freshness of the training set
as older data begins to age. Finally, we intend to explore the use of
online classi�cation algorithms in the role of the oracle.

6 RELATED WORK

Network Intrusion Detection. In their seminal paper, Sommer
and Paxson[62] reason about the intrinsic challenges of using
machine learning to detect network attacks. After many years of
successful ML-based approaches for detection of large-scale attacks
such as worms [e.g.,67] and botnets [e.g.,33, 34], network attack
detection research has struggled to make major breakthroughs
in the past 10 years.INSOMNIA aims to reopen discussions on
how machine learning can be adapted to overcome the speci�c
challenges of the network intrusion domain (Ÿ2).

Learning with Drift. One of the major challenges of the network
domain in the enterprise setting is extreme non-stationarity [8].
TESSERACT[54] quanti�es severe concept drift in the malware
domain, which causes rapid performance decay of ML-based de-
tectors due to violations of the i.i.d. assumption. CADE [71] is a
point-based outlier detector for drifting points, and has shown its
e�ectiveness on three types of network attacks.

The main objective of our work,INSOMNIA, is to mitigate con-
cept drift in network scenarios through incremental learning and
label estimation. The temporal dimension is intrinsic in incremental
learning and several works have been designed to exploit time-
aware techniques. For instance, Mohamed et al. [48] propose a
tra�c anomaly detector relying on incremental learning that does
not require model redeployment, but�unlikeINSOMNIA�it re-
quires partial ground truth labels for retraining over time.

Learning with Limited Labels. Given the di�culty in obtaining
timely accurate labels for network tra�c traces, semi-supervised
and unsupervised learning methods are the most suitable solutions
for deep learning-based intrusion detection systems. In the con-
text of network intrusion detection, Taheri et al. [63] develop an
unsupervised algorithm for outlier detection using incremental
clustering. However, it focuses on point-based anomaly detection,
whereasINSOMNIAaims to adapt to the distribution shift over
time. Noorbehbahani et al. [50]propose a semi-supervised approach
combining o�ine and online learning, while requiring some labels
continuously over time. To limit the amount of labels required, ac-
tive learning solutions are traditionally considered [57]. They rely

	Abstract
	1 Introduction
	2 Challenges and Motivation
	3 Methodology
	3.1 Overview
	3.2 Initialization Phase
	3.3 Incremental Learning Phase
	3.4 Explanations Phase

	4 Evaluation
	4.1 CICIDS2017 Network Traffic Data
	4.2 Experimental Setup
	4.3 Results

	5 Limitations and Future Work
	6 Related work
	7 Availability
	8 Conclusion
	References
	A Implementation

