The Adaptive Arms Race:

Redefining Robustness in

Al Security

Ilias Tsingenopoulos
KU Leuven
Leuven, Belgium
ilias.tsingenopoulos @kuleuven.be

Fabio Pierazzi
University College London
London, United Kingdom

f.pierazzi@ucl.ac.uk

Abstract—Despite considerable efforts on making them robust,
real-world Al-based systems remain vulnerable to decision based
attacks, as definitive proofs of their operational robustness have
so far proven intractable. Canonical robustness evaluation relies
on adaptive attacks, which leverage complete knowledge of the
defense and are tailored to bypass it. This work broadens the
notion of adaptivity, which we employ to enhance both attacks
and defenses, showing how they can benefit from mutual learning
through interaction. We introduce a framework for adaptively
optimizing black-box attacks and defenses under the competitive
game they form. To assess robustness reliably, it is essential to
evaluate against realistic and worst-case attacks. We thus enhance
attacks and their evasive arsenal fogether using reinforcement
learning (RL), apply the same principle to defenses, and evaluate
them first independently and then jointly under a multi-agent
perspective.

We find that active defenses, those that dynamically control
system responses, are an essential complement to model hard-
ening against decision-based attacks; that these defenses can be
circumvented by adaptive attacks, something that elicits defenses
being adaptive too. Our findings, supported by an extensive
theoretical and empirical investigation, confirm that adaptive
adversaries pose a serious threat to black-box Al-based systems,
rekindling the proverbial arms race. Notably, our approach
outperforms the state-of-the-art black-box attacks and defenses,
while bringing them together to render effective insights into the
robustness of real-world deployed ML-based systems.

I. INTRODUCTION

Al models are predominantly trained, validated, and de-
ployed with little regard to their correct functioning under ad-
versarial activity, often leaving safety and security considera-
tions as an afterthought. Adversarial contexts further aggravate
the typical generalization challenges that these models face
with threats beyond model evasion (misclassification), like
model extraction, model inversion, and model poisoning [1].
At the same time, the systems these models are components
of often expose interfaces that can be queried and used
as adversarial “instructors”, like in constructing adversarial
malware against existing Al-based malware detection [2], [3].
Focusing on adversarial examples for model evasion, the most
reliable mitigation to date is adversarial training (AT) [4], [5],
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an approach not without limitations as these models often re-
main irreducibly vulnerable at deployment, particularly against
black-box, decision-based attacks [6], [7], [8]. Nevertheless,
all such attacks exhibit a behavior at-the-interface that can be
described as adversarial itself, a generalization that subsumes
adversarial examples and opens a path towards novel defenses
and mitigations.

Adpversarial behavior is a temporal extension of adversarial
examples, perhaps not malicious or harmful in isolation, yet
part of an attack as it unfolds over time; it is also the canonical
description of adversarial examples in domains like dynamic
malware analysis and adversarial RL [9], [10]. Aside from
making the underlying models more robust, this behavior
can be countered as such, rather than relying on hardened
models exclusively. As Al models cannot update their decision
boundary in an online manner and in response to adversarial
activity on their interface, there has to be a complement to
model hardening: for instance active defenses such as rejection
or misdirection [11], [12], [13].

In this study we identify and address a crucial gap: evaluat-
ing the robustness of defenses against oblivious, non-adaptive,
and therefore suboptimal attackers, renders any results un-
reliable [14], [15]. The key observation we make is that
robustness must account for the ability of the adversary to
adapt while interacting with the model. To that end, we expand
the conventional notion of adaptive, from adapted attacks
that have an empirical configuration to bypass the defense, to
include the capability to self-adapt, where attacks adapt their
parameters and evasive actions fogether, based on how the
target model and its defenses respond [16]. We demonstrate
theoretically and empirically how self-adaptive attacks can use
RL to modify their policies to become both optimal and evade
active detection. Notably, this can be performed in a gradient-
based manner even in fully black-box contexts [II1.3], and is a
capability that properly reflects the level of adversarial threat
and in that way does not overestimate the empirical robustness;
real attackers will compute gradients after all [17].

Through proper threat modeling and self-adaptation, attacks



can reach their full potential, enabling the development of
effective defensive policies. To frame the need for adaptive
evaluations in adversarial machine learning (AML) differently:
a defense can be considered trustworthy only if it is evaluated
against an optimal adversary. This mutual interdependence
underscores the necessity for both attacks and defenses to be
self-adaptive, thereby establishing the competitive, zero-sum
dynamic inherent in their interaction. In this work, we examine
robustness from both perspectives: first, how to fully optimize
decision-based attacks, and second, how to devise reliable
countermeasures. We explore both offensive and defensive
strategies in depth, and make the following key contributions:

1. We demonstrate that active defenses against decision-
based attacks are a necessary but insufficient complement to
model hardening. Active defenses are inevitably bypassed by
self-adaptive attackers however, and necessitate self-adaptive
defenses too.

2. To facilitate reasoning on adaptive attacks and defenses,
we introduce a unified framework called “Adversarial Markov
Games” (AMG). We demonstrate how adversaries can opti-
mize their attack policy and evade active detection at the same
time; as a counter, we develop a novel active defense and
employ RL agents to adapt and optimize both.

3. In an extensive empirical evaluation and across a wide set
of adversarial scenarios, we validate our theoretical analysis
and show that self-adaptation with RL outperforms vanilla
black-box attacks, model hardening defenses like AT, and
notably both the state-of-the-art adaptive attack (OARS [18])
and stateful defense (Blacklight [19]). This supports self-
adaptation as an essential component when evaluating robust-
ness to black-box attacks.

4. For reproducibility, and to facilitate further research, we
open-source our code'.

Our work highlights that in the domain of black-box AML,
robust evaluations should go a step further than adapting
attacks: both attacks and defenses should have the capability
to optimize their strategies through interaction and in direct
response to other agency in their environment. The remainder
of the paper is structured as follows: Section II provides the
necessary background on the domain and reviews the related
work. Section III introduces and motivates our theoretical
analysis of robustness under decision-based attacks. Section
IV explains the threat model and the concrete design choices.
In Section V we elaborate on our experimentation and analyze
our results. We conclude with Section VI where we discuss
key insights, limitations and challenges.

II. PRELIMINARIES

In this work, we focus on the category of adversarial attacks
known as decision-based, a subset of query-based attacks
that operate solely on the hard-label outputs of the model
and are a highly realistic and pervasive threat in Al-based
cybersecurity environments. Despite the lack of the closed-
form expression of the model under attack, given enough
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queries their effectiveness can match the one of white-box
techniques [20], [15].

A. Attacks & Mitigations

While adversarial attacks have been extensively researched
in both white and black-box contexts, defenses have predomi-
nantly focused on white-box [4], [S]. As the black-box setting
discloses considerably less information, a seemingly intuitive
conclusion is that white-box defenses should suffice for the
black-box case too. Yet black-box attacks like [6], [7] have
shown to be highly effective against a wide range of defenses
like gradient masking [21], preprocessing [22], [23], and
AT [4]. The vast majority of adversarial defenses provide either
limited robustness or are eventually evaded by adapted attacks
[14]. Characteristically, preprocessing defenses are identified
and bypassed by expending queries for reconnaissance [24].

The partial exception to this rule is AT. Given dataset D =
(24, yi)?zl with classes C' where z; € R? is a clean example
and y; € 1,...,C is the associated label, the objective of AT
is to solve the following min-max optimization problem:

nE,p max  L(hg(x; + 6:), s 1
D < (o (i +0:), i) W

where x; 4 0; is an adversarial example of z;, hg : R — RC is
a hypothesis function and £(hy(x;+6;), y;) is the loss function
for the adversarial example x; + §;. The inner maximization
loop finds an adversarial example of z; with label y; for a
given L,-norm (with L, € {0,1,2,inf}), such that ||d;||; < e
and hg(x; + §;) # y;. The outer loop is the ordinary
minimization task, typically solved with stochastic gradient
descent. While the convergence and robustness properties of
AT have been investigated through the computation of the
saddle point and by interleaving normal and AT [5], the min-
max principle is conspicuous: minimize the possible loss for
a worst-case (max) scenario.

B. Stateful Defenses

Decision-based attacks possess properties that can be valu-
able for devising defenses against them, in addition to AT.
One such property is their intrinsic sequentiality: by following
a policy toward the optimal adversarial example, the generated
candidates are correlated. Note that this might not hold for the
queries themselves, as the adversary may apply transforma-
tions that the model is invariant to, such as the query blinding
strategy in Chen et al. [13]. This work is the first to employ a
stateful defense against query-based attacks. Another stateful
defense is PRADA [25], devised against model extraction
but effective against evasion too. These approaches assume
however that queries can be consistently linked (via metadata
like IP or account, cf. Table I) to uniquely identifiable actors —
who also exhibit limited to no collaboration — so that a query
buffer can be built for each.

This limitation, together with the scalability issues, was
recently addressed in the Blacklight defense, by employing
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Fig. 1. In AML, adaptive attacks are those with the capabilities
(knobs) to bypass a defense; adaptive control is rather the precise
tuning of all the known knobs. Against black-box systems, we
can reformulate adaptive so that it signifies both. For instance in
HSJA [7], radius, steps, and jump are parameters of the attack, while
rotate and translate are transformations that can evade a similarity-
based defense.

hashing and quantization [19]. Blacklight remains a similarity-
based defense, thus vulnerable to circumvention if an adver-
sary can find a query generation policy that preserves the
attack functionality while evading detection. OARS achieved
this by adapting existing attacks through the rejection signal
Blacklight returns [18]. Ultimately, any (stateful) defense has
to balance the trade-off between robust and clean accuracy; as
we demonstrate in this work, this trade-off can be measured
reliably only if the attacker is properly adaptive.

C. On Being Adaptive

The correct way to evaluate any proposed defense is against
adaptive attacks, that is with explicit knowledge of the con-
crete mechanisms of a defense [14]. In computer security this
is known as the stipulation that security through obscurity
does not work, as the robustness of defenses should not rely
on keeping their mechanism secret. If model hardening —
for instance by AT — is the defensive counterpart to white-
box attacks, active defenses like stateful detection are the
counterpart to decision-based attacks, and as we will further
demonstrate, also the necessary complement to hardening a
model against them.

At the same time, the level of threat that attacks pose
is often unclear or not thoroughly evaluated. Previous work
has demonstrated that the loss functions and parameters of
attacks are often suboptimal, leading to underestimating their
performance and thus overestimating the claimed degree of
robustness [15], [26]. This underestimation is further aggra-
vated in decision-based contexts, where the attacker is largely
oblivious of any preprocessing or active defenses the black-box
system might have. The true performance of attacks therefore
rests on the ability to adapt their operation policy and their
evasive capabilities in tandem.

In AML, “adaptive” by convention refers to attacks with full
knowledge of how a defense works and the tools to bypass it;
we denote such attacks as adapted. In this work we expand

the term to include adaptive control, defined as the ability
of a system to self-adapt: automatically reconfigure itself
in response to changes in the dynamics of the environment
in order to achieve optimal behavior [16]. We use adaptive
control in the sense “attack optimization” is used by Pintor
et al. [26], but here for black-box systems. What is to be
controlled is typically known in advance and well-defined.
However, the moment we consider adaptive evaluations, new
controls are directly implied: in a similarity-based defense
for instance, such controls would be transformations to the
input that the model is invariant to. To flesh out the twofold
meaning of adaptive, one has to both invent new knobs [27]
— the conventional understanding of adaptive, intractable to
automate yet — and dynamically control their correct configu-
ration that would lead to the optimal result (self-adaptive).
We conceptualize this more general definition of adaptive,
essential for having accurate evaluations against decision-
based attacks, in Figure 1.

D. Research Gap

Prior work has focused on adapted attacks, which incor-
porate general knowledge of any defenses, then empirically
configured to evade it [20], [7], [6]. Defenses also follow
the same adapted paradigm of empirically defined and fixed
operation [13], [19]. Our observation is that neither of them
are formalized or performed in a fully adaptive manner, that is
in response to how they influence their environment and with
respect to other adaptive agents in it, with clear limitations
when the latter is a given, e.g. in cybersecurity. To bridge
this gap, we provide a theoretical analysis and an empirical
study of existing and novel methodologies adapting through
direct interaction with their environment, denoting them as
self-adaptive.

Our work builds on a long line of prior research that focuses
on both sides of the competition between adversaries and
defenses. Carlini and Wagner [20] show that evaluating
existing attacks out-of-the-box is insufficient and that adapted
white-box attackers can break defensive distillation. Bose
et al. [29] propose Adversarial Examples Games, a zero-sum
game between a white-box attacker and a local surrogate of the
target model family. At the equilibrium the attacker can gener-
ate adversarial examples that have a high success rate against
models from the same family, constituting a zero-query, non-
interactive approach for generating transferable adversarial
examples. Pal et al. [30] propose a game-theoretic framework
for studying white-box attacks and defenses that occur in equi-
librium. Feng et al. [18] introduce OARS: adaptive versions
of existing attacks that bypass Blacklight [19], the state-of-
the-art stateful defense. To function, OARS presupposes the
rejection signal that a defense like Blacklight returns; a strong
assumption that as we show in this work does not have to
hold for stateful defenses. As we demonstrate in section V
and Table III, Blacklight can be bypassed without assuming
rejection, while the novel stateful defense we introduce can
fully withstand the OARS adaptive attack.



TABLE I
POSITIONING OF OUR WORK RELATIVE TO PROMINENT DECISION-BASED ATTACKS AND DEFENSES AND THEIR INDIVIDUAL
PROPERTIES. WHILE PRIOR WORKS FOCUS EXCLUSIVELY ON OFFENSE OR DEFENSE, OURS UNIFIES AND REASONS FROM BOTH

PERSPECTIVES.
Work Offensive Defensive
Optimized Evasive Adaptive —Rejection Active Adaptive —Metadata Misdirection

Boundary (2018) [6] O O O o O O —
BAGS (2018) [28] @) O @) o O @) — —
HSJA (2020) [7] o @) O ([ O O — —
OARS (2023) [18] o () L)) @) () @) — —
Adv. Training (2017) [4] ) @) O — @) O — —
Stateful (2020) [13] ) [ @) @) [ @) O @)
Blacklight (2022) [19] o ([ ] O O ([ O o O
) [ [ [ [ ] () [ ([

As the most relevant and representative threat against real-
world Al systems, in this work we scope on decision-based,
interactive attacks and defenses. We contribute a theoretical
and practical framework for self-adaptation, under which
the full extent of the offensive potential, and thus also the
defensive, are properly assessed. Our work can be viewed as
the synthesis of adaptive black-box attacks and defenses in
a unified framework, and to facilitate comparison to related
work, in Table I we situate it according to offensive properties:

« Optimized indicates offensive processes that undergo some
form of optimization.

« Evasive indicates the use of evasive tactics, like input
transformations, during querying.

« Adaptive denotes attacks that adapt their policy based on
how the defense responds.

« —Rejection denotes attacks that function without relying on
a rejection signal — and defenses that do not return one.

And defensive properties:

« Active indicates defenses that actively monitor and respond
to queries, and attacks that assume such defenses.

« Adaptive denotes defenses that adapt their policy based on
how the attack behaves.

« —Metadata denotes defenses that function without access
to query metadata, e.g. IP address or account.

« Misdirection indicates an active defense that instead of
rejecting queries, it misdirects attackers (cf. Figure 3).

For the remainder of the paper, the term <‘adaptive” is
used interchangeably with ‘“self-adaptive”, and we use the
term ‘“adapted” for what is commonly known as adaptive
evaluations in AML.

III. THEORETICAL FRAMEWORK

In this section, we abstract through the individual properties
of decision-based attacks and defenses to extract more general
insights than a purely empirical study would render. To investi-
gate how robust real-world systems are to evasion, two related
perspectives are crucial: a) resisting decision-based attacks,

and b) adapting attacks and evasive capabilities rogether. When
attacks (and defenses) are evaluated in a non-adaptive manner,
in the expansive sense we outlined in subsection II-C, results
are unreliable [14], [26]. Note that with offensive or defen-
sive methodologies adapting, their environments become non-
stationary [31], putting further pressure on the IID foundations
that ML builds on. To understand the implications of this
adaptation, we perform an analysis of the possible interactions
on the interface of an ML-based system, interactions that
can be more generally considered as sequential zero-sum
games [32], [33], [29]. In the following sections, introduced
terms and notation are highlighted in

A. Attacks

The most compelling threat that deployed ML-based sys-
tems face are decision-based black-box attacks, where no
access is assumed to the model or its parameters, only the ca-
pacity to submit queries and receive hard-label responses. One
of the first decision-based attacks was Boundary Attack [6],
followed by others that improve the overall performance,
typically measured as the lowest perturbation achieved for
the minimal amount of queries submitted. Prominent examples
are HSJA [7], Guessing Smart (BAGS) [28], Sign-Opt [34],
Policy-driven (PDA) [8], QEBA [35], and SurFree [36].

White-box attacks like C&W [20] do not function in black-
box environments, as there is no access to the inference
pipeline. To facilitate optimization, decision-based attacks
commonly initialize from a sample belonging to the target
class, as it can be considered an adversarial example with
an unacceptably large perturbation. This switch allows the
task to be solved continuously, by minimizing the perturbation
while always staying on the adversarial side of the boundary.
Decision-based attacks share further common aspects in their
function that we can abstract through: given starting and
original samples and respectively, the goal is to iter-
atively propose adversarial candidates =, until the distance

is minimized. This process follows different
algorithmic approaches that represent different geometrical



intuitions; we can describe it more generally by means of a
candidate generation policy:

W(;AZP(wt‘xngCvavsA)v (2)

that given z, and x., with p? the parameters and s the
state of the attack, generates a candidate x;. As attacks
execute over discrete time steps, if we assume that the model
always answers the attack procedure can be construed as a
Markov Decision Process (MDP) to be solved, by finding the
parameters 6 that minimize § for a given number of queries.

Consider now a multinomial classification model M under
attack, with a discriminant function , that
for each input = € [0,1]¢ generates an output y := {y €
[0,1]™] >, y. = 1} — a probability distribution over the
m classes. As black-box environments prevent access to these
probabilities, one can only observe the decision of the classifier
C that returns the highest probability class:

C(z) := argmax F.(z) = D(F.(x)) 3)
c€[m]
with D being the decision function, here D = arg max. The
goal in targeted attacks is to change the decision for
a correctly classified example z, to a predefined target class
. This process can be facilitated through a function
which given a perturbed example x; at step ¢, it returns a
binary indicator of success:

w(xt):{ﬂ it C(xy) = co

-1 if C(x) #co X

As long as the model responds, ¥ can always be evalu-
ated, and constitutes the fundamental mechanism upon which
decision-based attacks build. The adversarial goal can then be
described as the following constrained optimization problem:

min d(xy, x.) st
Tt

P(xe) =1, ®)

where the distance metric is an f,-norm, with p €
{0,1,2,inf}. As the threshold between adversarial and non-
adversarial relies on the subjectivity of human perception, this
highlights the indefinite nature of adversarial examples, further
exemplified in domains where visual proximity is of little
importance. Successful or unsuccessful adversarial examples
are therefore delimited by an threshold ¢ on perturbation,
where d(x,2;:) < e.

Real-world attacks being black-box does not make them
less effective. For instance, HSJA is guaranteed to converge
to a stationary point of Eq. (5). Given typical e values for
imperceptibility, this results in high attack success rates, even
against adversarially trained models. The limitations of AT
against decision-based attacks can be attributed to the out-
of-distribution (OOD) nature of adversarial examples, and
the saddle point optimization problem of Eq. (1) that make
it difficult for algorithms to converge to a global solution.
Furthermore, incorporate decision-based attacks in training is
not scalable as it can take orders of magnitude more steps

(queries) to produce an adversarial example, than white-box
attacks which take a few steps (1-50 in e.g. PGD [4]).
Decision-based attacks search for the optimal parameters
of the generation policy (2), those that given z!, with
1 denoting the i-th adversarial episode, minimize Eq. (5) in
expectation:

N
argernin E[Z d(xp,xl)], st

i=1

P(xy) =1, (6)

where 7, is the best adversarial example generated by policy
7r(;4 during episode i. Given the dimensionality of the input, it
can be intractable to learn a policy that modifies the feature
space directly [37]; CIFAR-10, for instance, has more than 3K
features to perturb.

In Al-based systems, the best practice is to freeze the model
after validation so that no novel issues are introduced by re-
training: for all queries x; submitted during an attack session,
we can therefore assume that Fy = Fy = ... = F}, Vt. While
this is representative of real-world settings, it also enables
adversaries to discover adversarial examples that were not
identified beforehand. Consequently, while model-hardening
through AT is necessary, it can also be insufficient against
decision-based attacks like HSJA.

Proposition IIL.1. Let F,. denote the discriminant function
of an adversarially trained model M, and let C(z) =
D(Fcl\gm)) denote its classifier. Then in HSJA, fto satisfy
E[Y";L, d(z,28)] > € it is necessary that: (a) D # arg max,
and (b) context T exists s.t. for some query i, D(F.(2)) #
D'(1, F.(xt)), where D' is a stateful extension of D.

Intuitively, HSJA operates in 3 stages which repeat: a binary
search that puts z; on the decision boundary, a gradient esti-
mation step, and projection step along the estimated gradient.
If the model always responds truthfully, the adversary will
be able to accurately perform all these steps and converge
to the optimal adversarial; without loss of generality, we can
extend this intuition to other decision-based attacks which
navigate the boundary. Secondly, the model should be able
to distinguish between two, otherwise identical, queries, when
one is part of an attack and the other is not, a capability
achievable through statefulness; see Appendix A for the proof.

B. Defenses

Proposition III.1 suggests that alternative classification poli-
cies are necessary in the presence of decision-based attacks,
e.g. classification with rejection or intentional misdirection.
Rejection has been realized in the form of conformal predic-
tion, where model predictions are sets of classes including
the empty one, or learning with rejection [11], [38]; while
misdirection has emerged as a technique in adversarial RL
and cybersecurity domains [10], [12]. While adversarially
training the discriminant function F' empirically shows some
degree of robustness to decision-based attacks, the manner
in which the model responds has a complementary potential.
The gap between the empirical and theoretically achievable



robustness is the source for an active defense distinct from
model hardening. Active defenses have direct implications
on attacks themselves however. Let us now assume an agent
carrying out an active defense policy:

75 = Plaglay, s7), a € {0,1} (7)

with z; the query, sP the state for the defense as created by
past queries, and < the binary decision: for queries deemed
adversarial, a = 1, otherwise @ = 0. When this policy is
stationary, the environment dynamics become stationary in
turn, thus besides the adversarial task itself, bypassing the
defense can also be formulated as an MDP to be solved (Fig-
ure 2). In two-player, zero-sum games, the moment an agent
follows a stationary policy, it becomes exploitable through
the reward obtained by an adversary [39]. Active defenses,
as consequence of decision-based attacks, entail therefore
adaptive adversaries.

Proposition II1.2. Against an active defense Wg and for time
horizon T, a decision-based attack following a non-adaptive
candidate generation policy m = m3',¥ t € [0,T] will per-
Sform worse in expectation (6), that is E[Zil d(xi, z8)]P >
B[, d(af, ).

A proof for BAGS and HSJA is included in Appendix A.
An adversary can reason, as a corollary to Proposition III.1,
that such defenses have fo be in place as it is suboptimal not
too. However, there is a second reason to consider adaptive
attacks even in the absence of active defenses, as attack
policies are often suboptimal with their default, empirically
defined parameters. Adapting attack policies is essentially
the optimization of these parameters, and as an approach
has proven very effective in other black-box or expensive-
to-evaluate domains, like Neural Architecture Search and
Data Augmentation [40], [41], [42]. Our results in section V
further indicate the correspondence between adaptive and
self-optimizing, showing that adaptive consistently outperform
non-adaptive attacks, particularly against active defenses.

Consider now an active defense that is based on a similarity
or conformal metric. In the twofold meaning we introduced
in subsection II-C, adaptive attack implies the capability to
bypass a similarity based defense; adaptive control implies
optimization instead, the active tuning of all the available
tools to evade the defense and minimize the perturbation (cf.
Figure 1). The updated adversarial objective then is to find
the optimal policy that also evades detection, and the way to
achieve this is by adapting the candidate generation policy (2)
itself. Notably, and despite the black-box and discontinuous
nature of the task, this optimization can be fully gradient-
based. Decision-based attacks can recover gradient-based
solutions to their objective, despite neither the active defense
nor the model itself being accessible in closed-form. For
model M, adversarial queries x;, and active defense P
making decisions oy, we can thus formulate the following:

Proposition II1.3 (Adversarial Policy Gradient). Given adver-
sarial policy 7r(§4 (2) that generates episodes T; of queries i,

and reward function r(7;) = Y. (1 — ), the optimal
evasive policy Wé‘i is obtained by gradient ascent on the
policy’s expected reward, VgE 4 [r(7;)].

The proof is included in Appendix A. We thus have estab-
lished that, a) in the presence of decision-based attacks, active
defenses are necessary, yet conditional on adversarial agency
they are insufficient and, b) adaptive attacks can become
optimal in terms of both evasion and efficiency by observing
and adapting to the discrete model decisions. To complete the
puzzle, the last piece is turning active defenses also adaptive.

Corollary II1.4. The active defense achieves its optimal
wf* (7), i.e. maximizing expectation [y . P(ai|zy, sPY),
by adapting its policy against the optimal evasive policy 71'5‘&.

Proof. Since the game is zero-sum, we may define the de-
fensive policy reward p on any trajectory 7; = (x1,...,27)
as p(1;) = >_,,c,, u. Treating the adversary’s policy g
as fixed, we perform gradient ascent on the expected reward
J(@) = Er(np o) [p(73)]. Under standard smoothness
assumptions, this converges to ¢* = arg max, J(¢), which is
precisely the defender’s best response to wé‘l. O

C. Adversarial Markov Games

By reasoning on both offensive and defensive capabilities,
we highlight why one cannot consider them independently.
As adaptive attacks and defenses are logical consequences
of each other, their composition forms a turn-taking com-
petitive game. A precise game-theoretic formulation requires
full knowledge of the environment: its models, players and
their utility functions, as well as the permitted interactions and
the transition dynamics, something typically intractable in this
and other cybersecurity settings. Model-free methods however
can learn optimal (offensive and defensive) responses directly
through interaction with their environment [12], [43], avoiding
the need for explicit modeling or solving the NP-hard bi-level
optimization problem of Eq. (1) [44].

To that end, Turn-Taking Partially-Observable Markov
Games (TT-POMGs), introduced by Greenwald et al. [45],
generalize Extensive-Form Games (EFGs) that model non-
cooperative, sequential decision-making games of imperfect
and/or incomplete information. TT-POMG is a suitable formal-
ism for decision-based attacks and defenses, with the added
benefit that it can be transformed into an equivalent belief state
MDP, significantly simplifying its solution.

Prior work has explored the competition underlying ad-
versarial example generation in no-box and white-box set-
tings [29], [46]. We instead focus on decision-based, interac-
tive environments, with unknown but stationary dynamics: all
other agents present are considered part of the environment
and therefore fixed in their behavior. By folding the strate-
gies of other agents into the transition probabilities and the
initial probability distribution of the game, an optimal policy
computed in the resulting MDP will correspond to the best-
response strategy in the original TT-POMG. The congruence
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Fig. 2. Schematic model of an AMG environment. Due to the inherent
uncertainty of behavior at either side of the interface, it is a partially
observable MDP, mirrored for each agent where one’s decisions become the
other’s observations. (I) denotes an adaptive attacker (cf. Fig. 1), (II) model
hardening (passive defense), and (III) an active defense.

between TT-POMGs and MDPs has both theoretical and
practical value for securing Al-based systems: once adversarial
agents and their capabilities are identified through rigorous
threat modeling, the best-response strategy in the simulated
environment yields the optimal defense.

We describe the environment that encompasses adversarial
attacks, adversarial defenses, and benign queries, as an Adver-
sarial Markov Game (AMG) — a special case of TT-POMG -
depicted in Figure 2. Formally, we represent AMG as a tuple
<i7 Sv 07 Av T ’Y>

e i = {D, A} are the players, where D denotes the defender
and A denotes the adversary. In our model, benign queries
are modeled as moves by nature.

e S is the full state space of the game, while O =
{OP, 04} are partial observations of the full state for
each player.

o A={AP A4} denotes the action set of each player.

o 7(s,a’,s") represents the transition probability to state
s’ € S after player i chooses action a’.

o7 = {rP 74} : O' x A* — R is the reward function
where 7%(s,a’) is the reward of player i if in state s
action a’ is chosen.

e 7' €0,1) is the discount factor for player i.

The goal of each player i is to determine a policy 7*(A*|O?)
that, given the policy of the other(s), maximizes their expected
reward. When a player employs a stationary policy, the AMG
reduces to a belief-state MDP where the other interacts with
a fixed environment. The game is sequential and turn-taking,
so each player ¢ chooses an action a from their set of actions
A which subsequently influences the observations of others.

We have shown that an adaptive defense policy 775 is nec-
essary to deter decision-based attacks, and that consequently
the candidate generation policy 7r54 has to be also be adaptive.
As with plausible assumptions we cannot assume access to the
exact state of the other agent, the states OP, 04 are partial

observations of the complete state S of the full game. For
instance, when the competing agents (holding beliefs about
each other) are human, they engage in recursive reasoning
expressed as [I believe that [my opponent believes [that I
believe...]]]. In the study of opponent modeling, considering
other agent policies as a stationary part of the environment is
equivalent to Oth level recursive reasoning: the agent models
how the opponent behaves based on the observed history, but
not how the opponent would act based on how the agent
behaves [47], [48]. In this work we consider more involved
recursive reasoning out of scope, as AMGs can be solved by
single-agent RL algorithms, and perform the empirical evalu-
ation without building explicit models of opponent behavior.

IV. THREAT MODEL

The empirical study we conduct in Section V reflects diverse
instantiations of the general theoretical framework introduced
in Section III. When working forward from the theoretical
to the practical, concrete design choices have to be made
when specifying the latter, choices that can have considerable
influence on the results. To elucidate our proposed robustness
evaluation methodology, in this section we provide the con-
crete details on the threat model and the environment.

[Threat Model]. Our AMG framework describes a two-
player competitive game; while extensible to more players, in
this work we assume that at a given moment only one attack
takes place. From the defensive perspective, incoming queries
can be either benign or part of an attack. An assumption
that influences the effectiveness of stateful detection is that
queries can be attributed to UIDs, e.g., an IP address or a user
account. However, adversaries can collude, create multiple
accounts, use VPNs, or in fact accounts and IP addresses
might not even be necessary to query the model. To address
this, we treat queries irrespective to their source. This is a
strictly more challenging setting for stateful defenses, where
we operate solely on the content of queries and not on any
other metadata, similar to [19]. Unlike Blacklight however,
instead of rejecting queries, something that in itself provides
more information to the adversary and thus facilitates evasion
(cf. OARS [18], Table I), we misdirect by returning the second
highest probability class. Furthermore, Gaussian noise is added
to the benign queries to simulate a noisy channel and a
shift in distribution, so that is not trivial for a defense to
tell adversarial noise apart. In summary, the black-box threat
model we consider is delineated as follows:

o Assets: Trained and deployed model M with correspond-
ing weights w.

o Agents: Adversary / Defender / Benign user.

o Adversary Goal: Generate minimal perturbation adversar-
ial examples in as few queries as possible, while evading the
defense.

o Defender Goal: Stop the adversary from generating ad-
versarial examples, while preserving the correct functionality
of the model M on benign users.

o Adversary Knowledge: The model M is known as the
black-box function that transforms inputs = € [0, 1]¢ to outputs



¢ € [m], m being the number of classes. The weights w and
the closed-form expression of M are unknown, as unknown
is if an active defense 72 is present or not.

o Defender Knowledge: The defender observes only the
content of incoming queries, without knowing if they come
from a benign user or the adversary.

o Adversary Capabilities: Adapt the parameters of the
attack and of any evasive transformations; in essence, optimize
the candidate generation policy 754.

o Defender Capabilities: For each query z, decide between
answering truthfully with the actual prediction C'(z) = ¢, or
misdirect with the second highest probability class cg.

[Similarity]. Decision-based attacks typically follow a pol-
icy that generates successive queries: these exhibit degrees
of similarity which can be quantified by an appropriate L,
norm. If that norm is computed on the original inputs however,
an adversary can adapt by employing evasive transformations
the model is invariant to and bypass the similarity detection
(cf. Figure 1). To account for this capability, we train a
Siamese network with contrastive loss in order to learn a latent
space L£(-) where similar inputs are mapped close together,
unaffected by added noise or transformations on the inputs.
For the stateful characterization of queries, we use two queues:
one for the detected adversarial queries as determined by the
defensive agent, and one for the benign and undetected ones.

[Active defense]. Recall that decision-based attacks eval-
uate a Boolean-valued function to determine if the query is
adversarial or not; a straightforward counter to this behavior
is to misdirect by returning a decision different from the actual
through a system of confinement. When new query z; is
received, a state is constructed based on x; and the queue
k_n,k_n_1,....,ko of known adversarial queries. Based on
this state, the defensive agent takes a single continuous action
{o € R|0 < ¢ < 1}, with o being the radius of a hypersphere
centered on the last known adversarial query k¢ in the latent
space L. If ||L(x¢) — L(ko)||2 < o the query is considered
adversarial and is appended to the adversarial queue as the
latest ko. This system of confinement is depicted in Figure 3.

[Adaptivity]. No evaluation in AML is complete without
considering adaptive adversaries; a notion we expand in this
work, that is with the instruments to bypass the defense and
their optimal configuration. As stateful defenses are so far
similarity based, to bypass them intuition points towards input
transformations the model is invariant to. For a given query
x¢ we want to compute a transformation x; = T(z:) so
that ||z} — z¢||2 > ||z¢ — @i—1||2 while F(T(z)) ~ F(x).
Depending on magnitude and composition of transformations
T, the identity F'(T(x;)) = F(z;) might not always hold.
As we also demonstrate in Section V, T interferes with the
perturbations of the adversarial policy: the performance and
evasiveness of an attack are thus in a natural trade-off.

At this point one should inquire what is the correct com-
position of transformations 7' to apply. When shall T' be
applied, and how does it affect the attack fundamentals? The
transformations 7' can be considered as a set of additional
controls, and like attack parameters they themselves can be
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Fig. 3. Misdirection in a hypothetical 2D decision boundary. The adaptive
defense controls a single parameter, the hypersphere radius around ko (the
last known adversarial); for queries x: that fall within this hypersphere the
model responds with a non-adversarial decision. x4 is the starting sample, T
the original, and x} the best possible adversarial.

suboptimal out-of-the-box [15]. Thus the combined control of
attack and evasion parameters is a prerequisite to properly
assess the strength of a defense. Their trade-off illustrates
why the twofold definition of adaptive is necessary in AML
evaluations: first to impart the tools to accomplish to the task
through the definition of what can be controlled, and then
to find the precise optimal configuration and strategy of the
attack.

[Agents & Environments]. Unlike common competitive
games, in AMGs the two players have different action and
state sets. AMGs are also asymmetric in the playing cadence:
while the defender plays every round, the adversary might wait
one to several rounds; HSJA for example is controlled on the
iteration rather on the query level. Training is complicated
further given that the experience upon which each agent
learns arrives only affer the opponent moves. We address
these challenges by developing custom learning environments
(with the OpenAl Gym and Stable-Baselines3 libraries) for
asymmetrical agents, with delayed experience collection, and
asynchronous training.

[States & Actions]. For the definition and the rationale
behind the states we use, we point the reader to Appendix B.
For actions, we control BAGS through 4 parameters: or-
thogonal step size, source step size, mask bias, and Perlin
bias. HSJA is controlled by 3: the gradient estimation radius,
the number of estimation queries, and the jump step size.
All evaluations start from controlling these attack parameters
only; if the active defense proves impossible to defeat, we
introduce additional knobs that control the magnitude and
probability of transformations on the input, with the goal to
evade detection while preserving semantic content and hence
the correct classification. The range of transformations we
experimented with as well as their magnitude and probability
are listed in Table V. Finally, in both BAGS and HSJA the
active defense consists of an 1-dimensional continuous action



that controls the radius of confinement a, as depicted in Fig 3.
[Rewards]. Success in an RL task relies heavily on how it
is rewarded. Engineering an effective reward function is non-
trivial and hides intricacies, as reward hacking and specifica-
tion gaming are common phenomena and the learned behavior
can vary [49]. For adversaries, the rewards we experimented
with are variations on minimizing the distance to the original
example — with extra reward shaping based on the fundamental
operation of each attack — while defenders are rewarded
or penalized for intercepting adversarial or benign queries
respectively. The rewards are described in Appendix B.

V. EVALUATION

For evaluation, we define a range of scenarios intended
to reflect all possible and realistic combinations between
adversarial attacks and defenses, and their adaptive versions.
Concretely, the research questions we want to evaluate are:
1) Are active defenses a necessary complement to model
hardening and to what extent? 2) Are attacks more threatening
when adaptive, i.e., do they outperform their vanilla versions
and evade active detection? 3) If yes, to what extend active
defenses recoup their performance by also turning adaptive?

[Metrics]. We employ ASR (Attack Success Rate) and
L2 norm of the perturbation. For the former we set a fixed
threshold of 3 for consistency between experiments, while the
latter is a more fine-grained metric well suited for comparing
baseline attacks, defenses, and their adaptive versions, as it
is not based on an (arbitrary) perceptual threshold that can
yield widely varying results when moved. The budgets we
evaluate over are 1K, 2K and 5K queries. As robustness
and classification accuracy are typically in trade-off, the third
metric of interest is the benign sample accuracy (Clean Acc.)
that the original model and the active defense achieve together.

A. Evaluation Setup

Our goal is to learn offensive and defensive policies that
are general and transfer to any other evasion task, with the
same attack and against the same model. Thus after training
and validating the agents, the final performance is reported
on a fixed hold-out set of 100 adversarial episodes where
the starting and original samples are selected at random. As
is best practice in AML, candidate samples are only those
that are correctly classified by the model. For each scenario
we perform a limited hyperparameter and reward function
exploration (max 30 trials), with the intention to root out poor
combinations rather than exhaust the search space, described
in more detail in Appendix D. In our empirical evaluation
we explore 4 types of attacks and 3 defenses against each
other, including the (at the time of writing) SotA attack and
defense. We list them here together with the rationale behind
their selection.

[Attacks]. The two black-box attacks we render self-
adaptive are 1: BAGS and 2: HSJA. They represent two
fundamentally different approaches, are highly effective, and
have the highest evasion potential compared to others, as

demonstrated in Blacklight [19]. BAGS is a stochastic, search-
based method where every query submitted is a new and
potentially better adversarial example. Contrastively, HSJA is
deterministic and composed of 3 different stages where the
queries are generated in an aggregated manner: the majority
of them are not candidate adversarial examples but means
of approximating the gradient at the decision boundary. Our
3: Adaptive Attack can be understood as an optimization
wrapper around an existing black-box attack, so to accurately
measure its potential we additionally compare it to 4: OARS
[18], as this is the SotA approach.

[Defenses]. We explore both static and active defenses.
For static, we evaluate 1: AT, as the preeminent method for
empirical robustness. As AT is a static, non-interactive defense,
we duplicate all our experimental scenarios over models with
and without AT. For active, we evaluate 2: Blacklight, the
SotA defense against black-box querying attacks, and our 3:
Adaptive Defense, as defined in section IV.

In training and evaluation, the adversarial game is played
as follows: the adversary starts by submitting a query, then
the defender responds either truthfully (the actual model
prediction) or by misdirecting (the second highest probability
class). Then the environment decides with chance p if the
adversary moves next, otherwise a benign query is drawn. In
either case, it is the defender’s turn; during testing they are
also oblivious to the nature of the query and know only the
content. All experiments are performed with p = 0.5; we also
evaluate our trained defense when no attack is present (p = 0)
in Appendix C.

The scenarios for all possible combinations of (non-) adap-
tive attacks and defenses are repeated over two datasets —
CIFAR10 and MNIST - and over two models with the same
architecture but different training regimes: with and without
AT. As the transition from single to multi-agent RL introduces
non-stationarity, we approach the AMG as a belief-state MDP
(relaxing the requirement of knowing the exact opponent
policies), and use PPO [43] agents to learn optimal policies
that will also constitute best responses for the full game [48].
Note that learning independently of other agency breaks the
theoretical guarantees of convergence [50], eg. in scenarios 7
& 8 where both agents learn simultaneously. Vanilla indicates
a baseline approach, Trained indicates an adapted approach
(fixed and stationary), while Adaptive indicates an approach
that is learning and adapting to the Trained/Vanilla counterpart.
Additionally, coloring denotes the agent that is being evaluated
in each scenario. The complete list of scenarios is as follows:

0) VA-ND - / No Defense: Baseline perfor-
mance of attacks (BAGS & HSJA) out-of-the-box, without
any active defense.

1) AA-ND - Adaptive Attack / No Defense: How much more
optimal is the adaptive version compared to the baseline
attack.

2) VA-VD — Vanilla Attack / Vanilla Defense: The perfor-
mance of our active defense, the non-adaptive version that
has an empirically defined detection threshold.



TABLE 11
ASR AND MEAN Lo PERTURBATION FOR 1K, 2K, AND 5K QUERIES FOR CIFAR-10, AGAINST NORMALLY AND ADVERSARIALLY
TRAINED MODELS. CLEAN ACC. REPORTS THE ACCURACY ON BENIGN QUERIES OF THE BASE MODEL PLUS ANY DEFENSES PRESENT;
IN THE FIRST TWO SCENARIOS (NO ACTIVE DEFENSE) THE BASELINE CLEAN ACCURACY IS REPORTED. YELLOW SCENARIOS DENOTE
THE BASELINE ATTACK PERFORMANCE, WHILE GREEN AND RED DENOTE DEFENSIVE AND OFFENSIVE SCENARIOS RESPECTIVELY. THE
ASTERISK DENOTES WHERE INPUT TRANSFORMATIONS WERE USED FOR EVASION.

CIFAR-10 Gap: 20.01
A‘,iv' Scenario BAGS HSJA Clean Acc.
Trained IK 2K 5K ASR| IK 2K 5K ASR | BAGS HSJA
8.27 7.86 7.26 5% 342 1.43 041 100% 91.69 91.69
1: AA-ND 1.26 0.71 049 100% 3.14 1.31 0.39  100% 91.69 91.69
2: VA-VD | 1527 1526 1520 0% | 11.14 10.81 10.33 7% 91.68 91.68
3: AA-VD 2.63 2.03 1.77 93% 5.68 3.61 2.12 85% 91.69 91.69
X 4: VA-AD | 20.01 20.01 20.00 0% | 17.17 1635 15.56 0% 91.60 91.50
*5: AA-TD 6.28 5.45 4.52 30% | 13.19 11.82 10.69 2% 91.52 91.46
*6: TA-AD | 1952 1940 18.95 0% | 1648 16.13 15.69 0% 91.38 91.62
*7: AA-AD 9.95 9.80 9.80 5% | 10.30 9.04 7.55 23% 91.66 91.55
*8: AA-AD | 19.85 19.85 19.85 0% | 1446 1393 13.08 1% 91.69 91.37
8.72 8.42 7.94 4% 3.73 1.74 0.75 100% 87.76  817.76
1: AA-ND 1.74 1.13 0.79  100% 3.64 1.77 0.73  100% 87.76  817.76
2: VA-VD | 1542 1535 1520 0% | 11.10 10.73 10.38 4% 87.72  81.73
3: AA-VD 2.82 2.26 2.06 81% 5.66 3.36 1.94 86 % 87.74 81.74
v 4: VA-AD | 20.01 20.01 20.00 0% | 17.06 16.40 15.81 0% 87.66  87.66
*5: AA-TD 8.48 7.68 6.82 9% | 13.59 12.65 11.39 1% 87.58 87.52
*6: TA-AD | 1958 1940 18.95 0% | 16.60 16.26 1599 0% 87.50 87.68
*7: AA-AD | 1043 1024 10.17 1% | 10.21 9.22 7.82 12% 87.73 87.61
“8: AA-AD | 19.86 19.86 19.86 0% | 15.71 1535 14.30 1% 87.67 87.40
3) AA-VD — Adaptive Attack / Vanilla Defense: Similar to As a baseline to compare to, we additionally evaluate our

scenario (2), but now the attack is adaptive.

4) VA-AD - Vanilla Attack / Adaptive Defense: The first
scenario where the active defense is also adaptive, against
the baseline adversary.

5) AA-TD - Adaptive Attack / Trained Defense: After the
adaptive defense is optimized, its policy is fixed and an
adaptive attack is trained against it.

6) TA-AD - Trained Attack / Adaptive Defense: The best
policy found in the previous scenario is fixed and an
adaptive defense is trained against it.

7) AA-AD — Adaptive Attack / Adaptive Defense: The first
scenario where both agents learn simultaneously, making
the environment non-stationary. In practice, the conver-
gence will vary and depend on the chosen hyperparameters
and rewards. Here we report the best-case for the attack.

8) AA-AD - Adaptive Attack / Adaptive Defense: The exact
setup as scenario 7, but the best-case for the defense is
reported instead.

In each successive scenario, we evaluate using the most
successful past policy, following standard practice in Markov
Games: the worst-case opponent policy is fixed, and a best
response to it is learned [32], [39]. Fixing other policies when
computing a best response stabilizes learning in multi-agent
environments, as it simplifies the problem to a single-agent
setting — one that, as discussed in Section III-C, can be solved
with standard RL.

Comparison to SotA. In Scenarios 0-8 we evaluate all
possible combinations between (adaptive) attack and defenses.

approach to the state-of-the-art stateful defenses and adaptive
attacks, that is Blacklight [19] and OARS [18] respectively.
We implement both Blacklight and OARS in our interac-
tive environments by using their publicly available code and
parameters. As our environments do not return a rejection
signal and to make a fair comparison, for OARS rejection
coincides with a non-adversarial decision. We thus define 5
further scenarios:

9) VA-BD - / Blacklight Defense: Baseline
performance of the attacks against Blacklight.

10) OA-BD — OARS Attack / Blacklight Defense: OARS
against Blacklight.

11) AA-BD - Adaptive Attack / Blacklight Defense: Our
adaptive attack against Blacklight.

12) OA-TD - OARS Attack / Trained Defense: OARS against
our trained defense from Scenario 6.

13) OA-AD - OARS Attack / Adaptive Defense: Our adaptive
defense retrained against OARS.

Our experiments were run on multiple machines, yet to give
an idea for the time complexity of our defense, on an Intel i7-
7700 CPU one forward pass in CIFAR - that is one response
to one query — takes 8 + 1.4 ms for ~700 MFLOPs.

B. Results

For consistency and comparability between evaluations, all
results are from the same 100 test episodes. The gap value
denotes the Lo perturbation that initially separates the starting
and the original samples, averaged over the 100 episodes.



TABLE III
ASR AND MEAN L3 PERTURBATION FOR CIFAR-10, COMPARING OUR ADAPTIVE ATTACK (AA) AND ADAPTIVE DEFENSE (AD) TO
BLACKLIGHT (BD) AND OARS (OA).

CIFAR-10 Gap: 20.01

A(,iv' Scenario BAGS HSJA Clean Acc.
Trained IK 2K 5K ASR[ 1K 2K 5K ASR [ BAGS HSIA
955 932 917 0% | 841 819 780 15% | 91.71 9171
10: OA-BD | 946 946 946 1% | 6.54 583 467 50% | 9171 9171
4 11: AA-BD | 226 139 132 98% | 455 308 244 78% | 9171 9171
12: OA-TD | 20.01 2001 2001 0% | 7.07 638 553 50% | 91.61 9159
13: OA-AD | 20.01 2001 2001 0% | 11.03 11.00 1095 5% | 91.61 91.69
975 956 946 0% | 867 850 828 7% | 8776 87.76
10: OA-BD | 979 979 979 1% | 577 453 326 72% | 8776 8176
v 11: AA-BD | 559 404 255 79% | 559 404 255 79% | 8776 81.76
12: OA-TD | 2001 2001 2001 0% | 644 549 438 65% | 87.66 87.64
13: OA-AD | 2001 2001 2001 0% | 1131 1112 1097 7% | 87.66 87.74

By testing the trained agents on budgets higher than 5K
we discovered that the trend in reducing Lo holds; to make
the agent training tractable and the evaluation wider however,
we limit the maximum query budget per adversarial episode
to SK. Table IT & Table III report the results for CIFAR10,
while Table I'V reports MNIST. The closer examination of the
empirical results help us extract and highlight several impor-
tant insights, practical observations, and general implications
for the broader AML field:

o The initial performance of an attack can be misleading:
out-of-the-box HSJA appears to be the better attack, but it is
often outperformed by adaptive BAGS, especially in CIFAR
and against active defenses.

o The performance of both attacks deteriorates considerably
against active defenses (VD), however the defenses reach their
full potential only when also adaptive (AD).

o Our adaptive defense (AD) outperforms both Blacklight
(BD) and non-adaptive (VD) defenses, also when transferred
(cf. Sc.12). Compared to Blacklight, it reduces ASR by ~90%
(in HSJA) when trained against OARS, while it offers similar
protection when transferred from another attack.

o Overall, against the strongest attacks and in the worst case
(Sc.7) for it, our defense contains the ASR in the range of
1 —36%.

o Our adaptive attack (AA) outperforms OARS (Sc.10 & 11)
and vanilla attacks (VA) by a wide margin, without access to
rejection sampling, and irrespective of the defense it faces; the
one exception is our adaptive defense (AD), against which it
has very limited success.

o The advantage of adaptive attacks is more pronounced
against active defenses, where they significantly outperform
non-adaptive versions, cf. Sc.0—1, Sc.2—3.

o When comparing the upper and lower halves of each table,
we can observe that AT adds a limited amount of robustness;
otherwise, the practical effect of AT is a tax on the attacker,
forcing them to expend more queries for the same perturbation
or having higher perturbation for the same query budget.

« Evasive transformations interfere with the attack policy, as
illustrated by the difference between BAGS and HSJA in Sc.5.
For an attack to reach its full potential, these two should be
adaptively controlled together.

o In Sc.1 to 8, agents train against the best opponent policy
as previously discovered, and ASR oscillates since following
a fixed policy enables the learning of an optimal counter
to it. Over successive adaptations, ASR eventually plateaus,
indicating an equilibrium for each specific dataset and attack
combination. This is illustrated in Figure 4.

o The first time active defenses resisted adaptive attacks was
in Sc.5 of CIFAR; we employed evasive transformations from
then onward.

« Different attack fundamentals respond differently to active
defenses; the gradient estimation stage of HSJA has a disad-
vantage against similarity detection, while the jump and binary
stages have an advantage.

« For HSJA, engineering a state the adaptive defense could
learn on, merely by leveraging our knowledge of the attack
and its geometric functioning, proved impossible. What did
prove effective however, was pure computation’: we used
Contrastive Learning [52] to learn an embedding from raw
queries, then used as state that transfers exceedingly well to
other attacks like BAGS.

The main takeaway here is that no matter the underlying
approach, to achieve optimal results adaptive strategies are
necessary. Let us take HSJA as an example, which is an
optimized attack (cf. Table I) and comes with convergence
guarantees, and examine how its effectiveness changes when it
switches from a vanilla or trained strategy to an adaptive strat-
egy. In Table II, when no active defense is present (Scenario
0), HSJA achieves a perfect ASR in CIFAR-10. Against active
defenses (Scenario 2) the ASR drops to 4—7%. However, when
HSJA is turned adaptive (Scenario 3), ASR is recouped back

2This is reminiscent of Sutton’s Bitter Lesson [51], the observation that
progress in Al is often driven by gains in computation rather than problem-
specific expert knowledge.



TABLE IV
ASR AND MEAN Lo PERTURBATION FOR 1K, 2K, AND 5K QUERIES AND ACCURACY ON CLEAN DATA FOR MNIST. THE EVALUATION
SCENARIOS ARE IDENTICAL TO TABLES II AND III.

MNIST Gap = 10.62
AfiV' Scenario BAGS HSJA Clean Acc.
Trained T[K 2K 5K ASR| 1K 2K 5K ASR | BAGS HSIA
530 528 526 3% | 359 307 261 73% | 9937 99.37
1: AANND | 274 257 247 78% | 361 309 260 74% | 9937 9937
2. VA-VD | 744 666 563 22% | 582 578 573 2% | 9934 9920
3:AA-VD | 379 3.66 344 29% | 354 309 277 61% | 9937 9931
4: VA-AD | 1057 1057 1057 0% | 1005 1005 10.05 0% | 9931  99.30
5:AATD | 357 329 314 39% | 500 397 338 36% | 9932 98.84
X 6: TA-AD | 10.62 1062 1062 0% | 1023 1023 10.18 0% | 9928 99.34
7: AA-AD | 489 489 486 8% | 506 476 438 36% | 9931 99.35
8: AA-AD | 1062 1062 1062 0% | 1021 1021 1021 0% | 9932 99.23
1062 1062 1062 0% | 565 565 565 2% | 9937 9937
10: OA-BD | 10.62 1062 10.62 0% | 453 400 3.5 46% | 9937 9937
11: AA-BD | 3.83 369 360 17% | 418 366 3.19 52% | 9937 9937
12: OA-TD | 1062 1062 1062 0% | 1021 1020 1020 0% | 99.22  99.28
13: OA-AD | 1062 1062 1062 0% | 1021 1020 1020 0% | 9932 99.28
526 525 524 2% | 461 404 341 30% | 99.15 99.15
1: AAXND | 328 308 296 51% | 459 397 335 34% | 99.15 99.15
2. VA-VD | 770 686 586 17% | 581 578 576 2% | 99.14 99.12
3AA-VD | 418 408 386 22% | 463 427 386 25% | 99.13 99.15
4: VA-AD | 1055 1055 1055 0% | 10.02 1002 1002 0% | 99.09 99.08
5:AA-TD | 404 374 354 27% | 58 509 426 16% | 99.11 98.78
v 6: TA-AD | 10.62 1062 1062 0% | 1020 1020 1020 0% | 99.06 99.06
7: AA-AD | 559 556 556 5% | 547 516 499 14% | 99.09 99.13
8: AA-AD | 1062 1062 1062 0% | 10.12 1012 10.12 0% | 99.10  99.01
1062 1062 1062 0% | 565 564 564 1% | 99.15 99.15
10: OA-BD | 10.62 10.62 1062 0% | 518 480 411 17% | 99.15 99.15
11: AA-BD | 431 407 396 13% | 504 465 420 19% | 99.15 99.15
12: OA-TD | 10.62 1062 1062 0% | 1026 1026 1026 0% | 99.00 99.06
13: OA-AD | 1062 1062 1062 0% | 1026 1026 1026 0% | 99.10 99.06

to 85 — 86%.

How do the above scenarios translate to a real-world attack,
and what would “turning adaptive” entail in practice? Let us
assume here a black-box deployed model M (e.g. Google
Cloud Vision API) with an active defense in place that aims
to stop querying attacks, as introduced in section IV. If we
employed HSJA with default parameters, it would fail to create
a successful adversarial example. Instead, under our AMG for-
mulation (III-C) we can assign the controllable HSJA parame-
ters as the action set of the attacker A, then Proposition I11.3
describes how the attack will recoup its performance based on
the model’s responses. Naturally, this requires several attack
episodes and multiple queries to collect state—action—reward
trajectories with which the policy parameters are gradually
adjusted, till convergence.

VI. DISCUSSION

Our work has several implications for performing robust
inference in the real-world. While AT remains the most reliable
defense, the empirical robustness it imparts will vary and even
be insufficient. We note that the robustness AT confers is
against all adversarial examples under the same L,,-norm; ac-
tive defenses protect only against querying attacks, but as they
do transfer between attacks (Scenario 12) they can be used

jointly as complementary approaches. We demonstrated how
Al-enabled systems are susceptible to adaptive adversaries that
devise new evasive techniques and control them jointly with
other attack parameters. This has been achieved in the fully
black-box case and against active defenses.

We note here that the level of threat posed by adaptive
adversaries remains considerable, as Proposition II1.3 does not
rely on the specifics of the underlying decision process and
can therefore be extended to other domains or modalities under
similar conditions. This is further supported by our empirical
investigation, where we evaluated with diverse methodologies,
including the state-of-the-art attacks and defenses at the time
of writing. Our results rekindle the proverbial arms race, where
as a consequence to adaptive attacks, defenses should also have
adaptive capabilities.

Limitations. To keep the amount of evaluations practical,
we narrowed the scope to targeted attacks and to Lo as
the more suitable norm for visual similarity. Targeted attacks
are strictly more difficult to perform than untargeted, while
for binary classification targeted and untargeted coincide;
our framework, however, can accommodate any adversarial
goal or metric. Another simplifying assumption we make is
that only one attack can take place at a time; however, the
queuing technique we use for incoming queries is readily



extensible to handle concurrent attacks. While we demonstrate
that our active defense does transfer between attacks, another
possibility to explore is training the defense on queries from
different kinds of attacks. It should be emphasized here that
active defenses — as any other defense — should always be
evaluated w.r.t. the cost they incur. The counterpart to the
protection provided against querying attacks, is the reduction
of performance on clean data. If we however compare the
upper and lower halves of Tables II & IV, we observe that
AT incurs a greater cost on clean accuracy than our active
defense. Finally, in our evaluation we focus on a wide range
of adaptive and non-adaptive scenarios where agents learn and
adapt interactively, which limits the number of datasets we
experiment with; nevertheless, our empirical investigation is
complemented by a theoretical analysis that lends support to
the generality of our findings independent of context.

Future Work. The AMG framework we introduce is gen-
eral by design and can accommodate the learning of optimal
offensive and defensive policies in any domain of interest
beyond image classification. A promising path for future
research is the extension of our adaptive attacks and defenses
to other domains and modalities, for instance malware, bot,
and network intrusion detection. This is specifically because
our approach circumvents the main obstacle of mapping
gradient-based perturbations to feasible objects (eg. binaries)
and instead can function directly in the problem space [37].
Another compelling and formidable challenge is automating
the adaptive evaluations in AML, that is adapting beyond
a specification by inventing tools to bypass defenses and
thus imparting controllability to adversarial tasks. Finally,
in our work we considered opponent agency as part of the
environment; other domains, like malware detection, might
benefit from explicit opponent modeling.

VII. CONCLUSION

With adaptive, decision-based attacks becoming more perva-
sive in multiple domains, every Al-based system that exposes
a queryable interface is inherently vulnerable. To aggravate
matters, this vulnerability cannot be mitigated by employing
model hardening approaches like adversarial training alone. To
fully defend in the presence of such attacks, active and adap-
tive defenses are necessary, and we demonstrate how optimal
defensive policies can be learned. However, the existence of
such defenses elicits in turn adaptive attacks which are able
to recover part of their original performance.

We perform a theoretical and empirical investigation of
decision-based attacks and stateful defenses under a unified
framework we name “Adversarial Markov Games” (AMG).
In self-adaptive, we introduce a novel twofold definition
of adaptive: both inventing new techniques to outmaneuver
opponents and adapting one’s operating policy with respect
to other agency in the environment. Furthermore, through
our theoretical analysis we demonstrate how any combination
of adversarial goals, be it performance, stealthiness [53], or
disruption, can be optimized in a gradient based manner, even
in the complete black-box case and in any domain. As new

attacks and defenses constantly emerge and are surpassed, our
proposed methodology is generally applicable as it turns any
such approaches in the current arms-race self-adaptive, thus
ensuring accurate and robust assessment of their performance.

The AMG framework we introduce helps us reason on
and properly assess the vulnerabilities of Al-based systems,
disentangling the inherently complex and non-stationary task
of learning in the presence of competing agency. By modeling
the latter as part of the environment, we can simplify this task
by computing a best response to the observed behavior. This
has a significant consequence for the security of Al-based
systems independent of modality or application: as long as
proper threat modeling is carried out, one can readily employ
RL agents in order to devise optimal defenses, but only after
they devised optimal attacks too.
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APPENDIX A
PROOFS

For a more intuitive understanding of the proofs, we provide
a high-level description of the attack fundamentals. BAGS
[28] performs a random walk along the boundary between
the adversarial and the non-adversarial regions, by first taking
a random step orthogonal to the original image direction, then
a source step towards it. The randomness in the directions
searched is reduced by utilizing Perlin noise and masks
computed on the difference between starting and original
samples. HSJA [7] operates in 3 stages: a binary search that
places the current best adversarial on the decision boundary,
an estimation step that computes the gradient at that point of
the boundary, and projection step along the estimated gradient.
These steps repeat until convergence.

[Proposition II1.1]
Proof. We proceed in two parts, corresponding to conditions
(a) and (b).

[Part 1] Let us denote by z.,z4,7; the original (un-
perturbed), the starting, and the current sample at step ¢
respectively. Given a target class ¢y € m we define a function:

Sy, (x4) = Fey (1) — rcrféz((FC(xt)) (®)

HSJA operates in 3 stages that alternate until convergence:
(1) binary search between x, and x. that places z; on
the decision boundary, (2) gradient estimation approximating
VS(x¢), (3) a step along the direction of the gradient V.S(x;).
We repeat Eq. 9 of [7], denoting the gradient direction as the
Monte Carlo estimate:

B

5 0-

b:

VS, (24,6 (¢ + dup)u 9)

where {u}£_, are i.i.d. draws from the uniform distribution
over the d-dimensional sphere, J is a small positive parameter,
and ¢, is the Boolean-valued function that all stages rely on:

%J%Fﬂ@ﬂ&xmw={+lif5@0>Q (10)

-1 if S(z) <0.
Given z., in search of adversarial examples HSJA iteratively
applies the following update function:
VS
v (1) (11)
IVSa, ()2

where & is a positive step size and a; is a line search
parameter in [0, 1] s.t. S(x411) = 0, i.e. the next query lies on
the boundary. Now let us assume that the decision function
D is argmax, i.e. D : R™ — N7 C(z) = D(F.(x)) =
arg max Fi(x), then from Eq. 3 and Eq. 8 we have:

T4l = Qe + (1 ){Jlf + é.t

7’5 Co

) (1)
x¢) =0 <= C(x) = {co,a}, a # co (12)
) ()

Let us define the function Z of two variables:

1 if a=0b
T(ap) =+ " =7 (13)
-1 if a#b.
From 12 and 13 we can rewrite Eq. 10 as follows:
Ga. (z1) = Z(C(24), co0) (14)

Provided that the gradient estimation happens at the decision
boundary where S(x;) = 0, Theorem 2 of [7] guarantees that
the gradient estimation is an asymptotically unbiased direction
of the true gradient:

VS, (24,0) &~ VS, (24),6 — 0 (15)

For by = 1 — a; and by plugging 14 & 15 in Eq. 9, and the
result in 11, we get:

VS, (2¢) }

I“J““C*“{“*Swvsu>z
Te t

ézimum+mmb}(®
1L S22 o (e + Sup)up
% 25:1 I(C (x4 + oup), co)up }

|5 3202 T(C e + ) coJu |2

In Eq. (16), the iterates xz; are guaranteed by Theorem
1 of HSJA [7] to converge to a stationary point x; of
Eq. (5), that is B[N d(zi,2)] < ¢ for ¢ a standard
imperceptibility threshold and IV adversarial episodes, which
contradicts the requirement E[Y". d(z},2%)] > e. Since the
only model-dependent term in Eq. (16) is the classifier C(-),
the contradiction can be avoided only with an alternative
classifier C’. With C(z) = D(F.(z)), and the discriminant
function F. unable to change without retraining, it follows
that D’ # arg max, so for adv. example z; misclassified as
co, Eq. 4 can return -1:

C(xt) =Ccy = '(/J(.’Et) =-1
" C(l’t) =, ¢ = {Co, m \ co, @}

where & denotes rejection and {m \ co} denotes misdirection,
i.e. intentional misclassification.

[Part 2] Let us assume that at timestep t, x; is not yet
adversarial, it is however still part of an ongoing adversarial
attack. To deter the attack, a perfect defense would have
to misclassify/reject this example; yet if an identical but
benign example x,, was submitted, classifier C' should preserve
its capacity to classify it correctly. Since any memoryless
classifier must assign the same label whenever x,, = z;, we
require a richer decision rule C’(z,7) = D(7, F.(z)) that
takes as auxiliary input context 7, e.g. the history of queries
{zo,...,2+} Uz,. By construction, even if x,, = x;, differing
contexts 7, # ¢ can force C'(xy,,7,) # C'(xt,7t), thereby
separating benign from adversarial queries. O

=T+ bt{xt +&

=T+ bt{xt +&

A7)

[Proposition III.2] We annotate terms with D when an
active defense ﬂf is present, and with Z/otherwise.

Proof. BAGS. This attack is in effect a gradual interpolation
from z, towards x., by first taking orthogonal steps x, on the



hypersphere around z. and then source steps towards z. in
order to minimize d(x. — ), where xy, is the best adversarial
example found so far. The source step parameter ¢ = (1.3 —
min(A,,1)) - ¢ — with \,, the ratio of the n last queries x;
that are adversarial and ¢ a positive constant — controls the
projection towards x.:

s) (18)

Then if we again assume that a non-zero amount of the
adversarial queries x; is flagged as such by the defense, it
follows that /\’B/ > AP and from the definition of ¢ we get

D < &7, At given t, from Eq. (18) we get that d(z.,zP) >
d(xc7 rtg ), and ceteris paribus the expectation (6) will be larger
with w7 present than without.

HSJA. We denote the queries during gradient estimation as
Ty, = Ty + 0u, u ~ Uniformgppere(d), the ratio of those x,,
detected as adversarial by the active defense as 7 € [0,1], and
the estimate V.S, _(x¢,d) as uy. We investigate the behavior
of active defenses as the ratio of detections 1 goes to 1.

Forn=1 = E[¢,, (z,)] = —1, and as u;, are uniformly
distributed, from Eq (9) we get:

xe=2xs+e (T —

lim u; = lim — Z ¢z, (T + dup)u

n—1 n—1 B
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At the limit of detectlon we observe that the gradient
estimate u; behaves like a uniformly drawn vector around x; of
shrinking size. By the Law of Large Numbers, as B increases
the average direction of u; will align with the expected value:
that is a random direction on the unit hypersphere. However,
due to the % term, the size of u; goes to 0. From Eq. (19)
then we get: lim,,; u; = 0. The gradient estimation step is
followed by the “jump” step that computes x,y; as follows:

(20)
As the ratio of detections 7 approaches 1, we observe that

the adversarial iterates x;41 converge prematurely: then all
else being equal and for given ¢, d(z.,zP) > d(z., aef()

19)

Tpp1 = Ty + Eug

O
[Proposition IT1.3]

Proof. Let 7T54 be the adversarial policy generating queries ¢,
in N episodes 7; of length L. The defense 72 o ), upon receiv-
ing a query z; outputs a decision a; = 7 P(xy,sP) € {0,1},
with 1 and 0 indicating rejection and acceptance respectively.
The goal of the adversary is to find the parameters 6* that
maximize the expected reward:

1 ML
J(0) =Eqalr (T, szl_at
z:l =1 t=1
21
The gradient of J(6) with respect to the policy parameters
0 is the direction of steepest ascent for Eq. (21). Through the
Policy Gradient Theorem [54] we can express the gradient
of the expected reward in terms of the gradient of the log-

likelihood of the policy, weighted by the reward:

Mz

VoT(0) = VoEalr(m:)]
= E,rgx [r(m5) Ve log mg(7;)]
L
=E.a [ (1—a)Velogms'(r:)
t=1

LN L
%WZZ 1—a Vglogﬁe (%)

i=1 t=1

(22)

The gradient is thus estimated by sampling NV episodes from
the policy 7r to compute Eq. (22). To maximize the expec-
tation, we 1terat1vely update the policy parameters 6 using
gradient ascent: § < 6 +nVyJ(6). With n > 0 the learning
rate, this process converges to 6*. Recall that Eq. (21) attains
its maximum for Zfil Zthl a; = 0, therefore the converged
policy ﬂ'é‘i will correspond to the optimal evasive policy.

O

APPENDIX B
ON STATES & REWARDS

[States]. To handle the partial observability, we engineer
states that incorporate past information. For BAGS, the ad-
versary uses an 8-dimensional state representation with the
following information normalized in the range [0, 1] : current
amount of queries 4, average queries that are adversarial a,
the initial gap g, the current gap d, the location | = g, the
slope s = m —[ where m is a moving average of the location,
the frequency of improvement f, and r which is a moving
average of the perturbation reduction n, In HSJA the state
representation is slightly different: » = 2, and f = 7. with j
number of jump steps in last iteration.

For the defense, in HSJA (and to a lesser extent BAGS) it
has been difficult to engineer a state for policies to effectively
learn on. The knowledge of the attack internals and fundamen-
tals, geometric properties and distances, model activations and
logits, and any combination thereof, did not suffice. Ultimately
we decided to learn a representation instead. This representa-
tion is a 64-dimensional embedding of a CNN trained with
triplet loss, on data generated by HSJA and benign queries,
with the input being a tensor of the last query subtracted from
the 25 most recent adversarial queries and then stacked.

[Rewards]. The concrete definitions of the rewards for each
type of agent are:

o BAGS adversary: with 2 € [1,50] the number of queries

to a better adversarial example and ¢ the maximum queries:
Rlz%ifn>0else0|R22%ifn>0else0|
123,:(1—\/5)2—(1—,/“%”)2 | R4 =i -R2 | R5 =
|log(d/g)| if i > telse 0 | R6 = v/i-a | R7 = R4 + R6.
o HSJA adversary: with e the gradient estimation steps: R1 =
2.n|R2= 55+R1|R3 =10 |R4 = 1 | R5 = 20D
if i >telse 0| R6=2- (0.5 |aft — 05\) + b, where
b= 45 if j <3else 0| R7= R34 R6 | R8 = R5 + R6.



e BAGS defender: where x4 is the starting sample, z; the
last query, x; the best adversarial so far, s; the average
step size between queries, i € [0, 1] the last action of the
defender, z € [0, 1] the ¢> distance of x; and the last known
adversarial query in embedding space, z: R1 = |log(0.1g+
Iitg,olle)] - 0.1 | R2 = [1ogy 5] | R3 = -y | Rd =
—(x¢), where ¢ is Eq. 4 | RS =h — z.

o HSJA defender: where zpg are queries during the binary
search: R1 = 1 — 2(12e2ly | R3 = h — 2 | R3 = R2 -
2(rps) | R4 = —[p{zps)| | RS = R2 if v(x;) clse
2- R2.

e For both BAGS and HSJA defenders, the aforementioned
are the rewards when z; is adversarial; when it is benign,
the reward is R = 1 — h if the model responded correctly,
otherwise R = —1.

TABLE V
INPUT TRANSFORMATIONS.

Input Transformations | Magnitude | Probability

Brightness & Contrast 0-0.5 0-1

Random Horizontal Flip - 0-1

Random Vertical Flip - 0-1

Sharpness 0.8-1.38 0-1

Perspective 0.25-0.5 0-1

Rotation °0 — °180 0-1

Uniform Pixel Scale 0.8-12 0-1

Crop & Resize 0.6 -1 0-1

Translation -02-02 0-1
APPENDIX C

BASE RATE OF ATTACKS

In all the evaluations so far we use a fixed probability
P(adv) = 0.5 that an incoming query is adversarial. To
assess how our adaptive stateful defenses (Scenarios 4 & 6)
perform in the complete absence of attacks, we evaluate them
with P(adv) = 0 without retraining; the results are shown
in Table VI. We observe a small reduction in the accuracy
on clean samples that can be attributed to the considerably
different base rate of adversarial and benign queries. Note
however that as the probability of adversarial queries is an
intrinsic property of each environment, if the base rate of
attacks changes the defensive agents can be retrained to adjust
to it.

TABLE VI
CLEAN ACCURACY ON CIFAR-10 FOR SCENARIOS 4 & 6, WHERE P (adv)
DENOTES THE PROBABILITY THAT A QUERY IS PART OF AN ATTACK.

Adv. | pladv) | BAGS4 | BAGS6 | HSIA4 | HSIAG
Trained

X 05| 9155 | 9138 | 9159 | 9162

00 | 9091 | 9095 | 9048 | 90.86

v 05| 87.61 | 8750 | 87.58 | 87.68

00| 87.02| 87.11| 8670 | 86.98

APPENDIX D
MODELS & HYPERPARAMETERS

The image classification models we use are ResNet-20 for
CIFAR-10 and a standard 2 convolutional / 2 fully-connected
layer NN for MNIST. For adversarially training models, we
follow the canonical approach as described in [5]: the model is
trained for 20 epochs, where the first 10 are trained normally
and the last 10 on batches containing additional adversarial
examples generated with 40 steps of PGD. For learning the
similarity space, that is the metric space where defensive
agents control the radius of interception around which a query
is adversarial or not, we use a Siamese CNN. This network
is trained with contrastive loss, where dissimilar examples are
generated by adding Gaussian noise and performing evasive
transformations on the input from the list in Table V. For
the PPO agents trained for each scenario, we use the open
source library Stable-Baselines3 *. Policies are parameterized
by a two fully-connected layer NN; the hyperparameter search
space is shown in Table VII.

Blacklight & OARS. For evaluating Blacklight [19] and
OARS [18] we use their default hyperparameters as those
are provided in the publicly available implementations. In
particular, as OARS spends 200 extra queries per episode to
adapt the proposal distribution, we add those on top of b the
evaluation budget. Additionally, as our defense is not rejection
based, we replace the rejection decision with a non-adversarial
one.

TABLE VII
HYPERPARAMETER RANGES DURING PPO TRAINING.

| Hyperparameter | BAGS | HSJA |

learning rate 3e-3 — le-4 3e-3 — le-4
episode steps 600 — 3000 | 1000 — 5000

total steps le5 — 4e5 2e4 — 2e5

total queries | 25K — 100K 5K - 50K

batch size 32 - 128 32 - 64

buffer size | 2048 — 2048 64 — 1024

epochs 20 - 20 20 - 20

gamma 0.85 - 0.99 0.9 - 0.99

3https://github.com/DLR-RM/stable-baselines3
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Fig. 4. Progression of ASR over successive adaptations. Red and green values in ASR denote offensive and defensive

scenarios respectively.



