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Abstract—Recent research efforts on adversarial ML have
investigated problem-space attacks, focusing on the generation
of real evasive objects in domains where, unlike images, there
is no clear inverse mapping to the feature space (e.g., software).
However, the design, comparison, and real-world implications of
problem-space attacks remain underexplored.

This paper makes two major contributions. First, we propose
a novel formalization for adversarial ML evasion attacks in the
problem-space, which includes the definition of a comprehensive
set of constraints on available transformations, preserved seman-
tics, robustness to preprocessing, and plausibility. We shed light
on the relationship between feature space and problem space,
and we introduce the concept of side-effect features as the by-
product of the inverse feature-mapping problem. This enables
us to define and prove necessary and sufficient conditions for
the existence of problem-space attacks. We further demonstrate
the expressive power of our formalization by using it to describe
several attacks from related literature across different domains.

Second, building on our formalization, we propose a novel
problem-space attack on Android malware that overcomes past
limitations. Experiments on a dataset with 170K Android apps
from 2017 and 2018 show the practical feasibility of evading
a state-of-the-art malware classifier along with its hardened
version. Our results demonstrate that “adversarial-malware as
a service” is a realistic threat, as we automatically generate
thousands of realistic and inconspicuous adversarial applications
at scale, where on average it takes only a few minutes to
generate an adversarial app. Yet, out of the 1600+ papers on
adversarial ML published in the past six years, roughly 40 focus
on malware [15]—and many remain only in the feature space.

Our formalization of problem-space attacks paves the way to
more principled research in this domain. We responsibly release
the code and dataset of our novel attack to other researchers, to
encourage future work on defenses in the problem space.

Index Terms—adversarial machine learning; problem space;
input space; malware; program analysis; evasion.

I. INTRODUCTION

Adversarial ML attacks are being studied extensively in
multiple domains [11] and pose a major threat to the large-
scale deployment of machine learning solutions in security-
critical contexts. This paper focuses on test-time evasion
attacks in the so-called problem space, where the challenge
lies in modifying real input-space objects that correspond to
an adversarial feature vector. The main challenge resides in
the inverse feature-mapping problem [12, 13, 32, 46, 47, 58]
since in many settings it is not possible to convert a fea-
ture vector into a problem-space object because the feature-
mapping function is neither invertible nor differentiable. In
addition, the modified problem-space object needs to be a
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valid, inconspicuous member of the considered domain, and
robust to non-ML preprocessing. Existing work investigated
problem-space attacks on text [3, 43], malicious PDFs [12,
22, 41, 45, 46, 74], Android malware [23, 75], Windows
malware [38, 60], NIDS [6, 7, 20, 28], ICS [76], source
code attribution [58], malicious Javascript [27], and eyeglass
frames [62]. However, while there is a good understanding on
how to perform feature-space attacks [16], it is less clear what
the requirements are for an attack in the problem space, and
how to compare strengths and weaknesses of existing solutions
in a principled way.

In this paper, motivated by examples on software, we
propose a novel formalization of problem-space attacks, which
lays the foundation for identifying key requirements and com-
monalities among different domains. We identify four major
categories of constraints to be defined at design time: which
problem-space transformations are available to be performed
automatically while looking for an adversarial variant; which
object semantics must be preserved between the original
and its adversarial variant; which non-ML preprocessing the
attack should be robust to (e.g., image compression, code
pruning); and how to ensure that the generated object is a
plausible member of the input distribution, especially upon
manual inspection. We introduce the concept of side-effect
features as the by-product of trying to generate a problem-
space transformation that perturbs the feature space in a certain
direction. This allows us to shed light on the relationships
between feature space and problem space: we define and
prove necessary and sufficient conditions for the existence of
problem-space attacks, and identify two main types of search
strategies (gradient-driven and problem-driven) for generating
problem-space adversarial objects.

We further use our formalization to describe several inter-
esting attacks proposed in both problem space and feature
space. This analysis shows that prior promising problem-
space attacks in the malware domain [31, 60, 75] suffer from
limitations, especially in terms of semantics and preprocessing
robustness. Grosse et al. [31] only add individual features
to the Android manifest, which preserves semantics, but can
be removed with preprocessing (e.g., by detecting unused
permissions); moreover, they are constrained by a maximum
feature-space perturbation, which we show is less relevant
for problem-space attacks. Rosenberg et al. [60] leave arti-
facts during the app transformation which are easily detected
through lightweight non-ML techniques. Yang et al. [75] may
significantly alter the semantics of the program (which may



account for the high failure rate observed in their mutated
apps), and do not specify which preprocessing techniques they
consider. These inspire us to propose, through our formaliza-
tion, a novel problem-space attack in the Android malware
domain that overcomes limitations of existing solutions.

In summary, this paper has two major contributions:
• We propose a novel formalization of problem-space at-

tacks (§II) which lays the foundation for identifying key
requirements and commonalities of different domains,
proves necessary and sufficient conditions for problem-
space attacks, and allows for the comparison of strengths
and weaknesses of prior approaches—where existing
strategies for adversarial malware generation are among
the weakest in terms of attack robustness. We introduce
the concept of side-effect features, which reveals con-
nections between feature space and problem space, and
enables principled reasoning about search strategies for
problem-space attacks.

• Building on our formalization, we propose a novel
problem-space attack in the Android malware domain,
which relies on automated software transplantation [10]
and overcomes limitations of prior work in terms of
semantics and preprocessing robustness (§III). We exper-
imentally demonstrate (§IV) on a dataset of 170K apps
from 2017-2018 that it is feasible for an attacker to evade
a state-of-the-art malware classifier, DREBIN [8], and its
hardened version, Sec-SVM [23]. The time required to
generate an adversarial example is in the order of minutes,
thus demonstrating that the “adversarial-malware as a ser-
vice” scenario is a realistic threat, and existing defenses
are not sufficient.

To foster future research on this topic, we discuss promising
defense directions (§V) and responsibly release the code and
data of our novel attack to other researchers via access to a
private repository (§VII).

II. PROBLEM-SPACE ADVERSARIAL ML ATTACKS

We focus on evasion attacks [12, 16, 32], where the ad-
versary modifies objects at test time to induce targeted mis-
classifications. We provide background from related literature
on feature-space attacks (§II-A), and then introduce a novel
formalization of problem-space attacks (§II-B). Finally, we
highlight the main parameters of our formalization by instan-
tiating it on both traditional feature-space and more recent
problem-space attacks from related works in several domains
(§II-C). Threat modeling based on attacker knowledge and
capability is the same as in related work [11, 19, 65], and is
reported in Appendix B for completeness. To ease readability,
Appendix A reports a symbol table.

A. Feature-Space Attacks

We remark that all definitions of feature-space attacks
(§II-A) have already been consolidated in related work [11,
16, 21, 23, 31, 33, 44, 66]; we report them for completeness
and as a basis for identifying relationships between feature-
space and problem-space attacks in the following subsections.

We consider a problem space Z (also referred to as input
space) that contains objects of a considered domain (e.g.,
images [16], audio [17], programs [58], PDFs [45]). We
assume that each object z ∈ Z is associated with a ground-
truth label y ∈ Y , where Y is the space of possible labels.
Machine learning algorithms mostly work on numerical vector
data [14], hence the objects in Z must be transformed into a
suitable format for ML processing.

Definition 1 (Feature Mapping). A feature mapping is a
function ϕ : Z −→ X ⊆ Rn that, given a problem-space
object z ∈ Z , generates an n-dimensional feature vector
x ∈ X , such that ϕ(z) = x. This also includes implicit/latent
mappings, where the features are not observable in input
but are instead implicitly computed by the model (e.g., deep
learning [29]).

Definition 2 (Discriminant Function). Given an m-class ma-
chine learning classifier g : X −→ Y , a discriminant function
h : X ×Y −→ R outputs a real number h(x, i), for which we
use the shorthand hi(x), that represents the fitness of object x
to class i ∈ Y . Higher outputs of the discriminant function hi
represent better fitness to class i. In particular, the predicted
label of an object x is g(x) = ŷ = arg maxi∈Y hi(x).

The purpose of a targeted feature-space attack is to modify
an object x ∈ X with assigned label y ∈ Y to an object x′

that is classified to a target class t ∈ Y , t 6= y (i.e., to modify
x so that it is misclassified as a target class t). The attacker
can identify a perturbation δ to modify x so that g(x+δ) = t
by optimizing a carefully-crafted attack objective function. We
refer to the definition of attack objective function in Carlini
and Wagner [16] and in Biggio and Roli [11], which takes
into account high-confidence attacks and multi-class settings.

Definition 3 (Attack Objective Function). Given an object
x ∈ X and a target label t ∈ Y , an attack objective function
f : X × Y −→ R is defined as follows:

f(x, t) = max
i 6=t
{hi(x)} − ht(x) , (1)

for which we use the shorthand ft(x). Generally, x is classi-
fied as a member of t if and only if ft(x) < 0. An adversary
can also enforce a desired attack confidence κ ∈ R such that
the attack is considered successful if and only if ft(x) < −κ.

The intuition is to minimize ft by modifying x in directions
that follow the negative gradient of ft, i.e., to get x closer to
the target class t.

In addition to the attack objective function, a considered
problem-space domain may also come with constraints on the
modification of the feature vectors. For example, in the image
domain the value of pixels must be bounded between 0 and
255 [16]; in software, some features in x may only be added
but not removed (e.g., API calls [23]).

Definition 4 (Feature-Space Constraints). We define Ω as the
set of feature-space constraints, i.e., a set of constraints on
the possible feature-space modifications. The set Ω reflects
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the requirements of realistic problem-space objects. Given an
object x ∈ X , any modification of its feature values can be
represented as a perturbation vector δ ∈ Rn; if δ satisfies Ω,
we borrow notation from model theory [72] and write δ |= Ω.

As examples of feature-space constraints, in the image
domain [e.g., 11, 16] the perturbation δ is subject to an
upper bound based on lp norms (||δ||p ≤ δmax), to preserve
similarity to the original object; in the software domain [e.g.,
23, 31], only some features of x may be modified, such that
δlb � δ � δub (where δ1 � δ2 implies that each element of
δ1 is ≤ the corresponding i-th element in δ2).

We can now formalize the traditional feature-space attack
as in related work [11, 12, 16, 23, 52].

Definition 5 (Feature-Space Attack). Given a machine learn-
ing classifier g, an object x ∈ X with label y ∈ Y , and a
target label t ∈ Y, t 6= y, the adversary aims to identify a
perturbation vector δ ∈ Rn such that g(x + δ) = t. The
desired perturbation can be achieved by solving the following
optimization problem:

δ∗ = arg min
δ∈Rn

ft(x+ δ) (2)

subject to: δ |= Ω . (3)

A feature-space attack is successful if ft(x+δ∗) < 0 (or less
than −κ, if a desired attack confidence is enforced).

Without loss of generality, we observe that the feature-space
attacks definition can be extended to ensure that the adversarial
example is closer to the training data points (e.g., through the
tuning of a parameter λ that penalizes adversarial examples
generated in low density regions, as in the mimicry attacks
of Biggio et al. [12]).

B. Problem-Space Attacks

This section presents a novel formalization of problem-
space attacks and introduces insights into the relationship
between feature space and problem space.

Inverse Feature-Mapping Problem. The major challenge
that complicates (and, in most cases, prevents) the direct
applicability of gradient-driven feature-space attacks to find
problem-space adversarial examples is the so-called inverse
feature-mapping problem [12, 13, 32, 46, 47, 58]. As an
extension, Quiring et al. [58] discuss the feature-problem space
dilemma, which highlights the difficulty of moving in both
directions: from feature space to problem space, and from
problem space to feature space. In most cases, the feature
mapping function ϕ is not bijective, i.e., not injective and not
surjective. This means that given z ∈ Z with features x, and a
feature-space perturbation δ∗, there is no one-to-one mapping
that allows going from x+δ∗ to an adversarial problem-space
object z′. Nevertheless, there are two additional scenarios. If
ϕ is not invertible but is differentiable, then it is possible to
backpropagate the gradient of ft(x) from X to Z to derive
how the input can be changed in order to follow the negative
gradient (e.g., to know which input pixels to perturbate to
follow the gradient in the deep-learning latent feature space).

If ϕ is not invertible and not differentiable, then the challenge
is to find a way to map the adversarial feature vector x′ ∈ X to
an adversarial object z′ ∈ Z , by applying a transformation to z
in order to produce z′ such that ϕ(z′) is “as close as possible”
to x′; i.e., to follow the gradient towards the transformation
that most likely leads to a successful evasion [38]. In problem-
space settings such as software, the function ϕ is typically not
invertible and not differentiable, so the search for transforming
z to perform the attack cannot be purely gradient-based.

In this section, we consider the general case in which the
feature mapping ϕ is not differentiable and not invertible (i.e.,
the most challenging setting), and we refer to this context to
formalize problem-space evasion attacks.

First, we define a problem-space transformation operator
through which we can alter problem-space objects. Due to
their generality, we adapt the code transformation definitions
from the compiler engineering literature [1, 58] to formalize
general problem-space transformations.

Definition 6 (Problem-Space Transformation). A problem-
space transformation T : Z −→ Z takes a problem-space
object z ∈ Z as input and modifies it to z′ ∈ Z . We refer to
the following notation: T (z) = z′.

The possible problem-space transformations are either ad-
dition, removal, or modification (i.e., combination of addition
and removal). In the case of programs, obfuscation is a special
case of modification.

Definition 7 (Transformation Sequence). A transformation
sequence T = Tn◦Tn−1◦· · ·◦T1 is the subsequent application
of problem-space transformations to an object z ∈ Z .

Intuitively, given a problem-space object z ∈ Z with label
y ∈ Y , the purpose of the adversary is to find a transformation
sequence T such that the transformed object T(z) is classified
into any target class t chosen by the adversary (t ∈ Y ,
t 6= y). One way to achieve such a transformation is to first
compute a feature-space perturbation δ∗, and then modify the
problem-space object z so that features corresponding to δ∗

are carefully altered. However, in the general case where the
feature mapping ϕ is neither invertible nor differentiable, the
adversary must perform a search in the problem-space that
approximately follows the negative gradient in the feature
space. However, this search is not unconstrained, because the
adversarial problem-space object T(z) must be realistic.

Problem-Space Constraints. Given a problem-space ob-
ject z ∈ Z , a transformation sequence T must lead to an
object z′ = T(z) that is valid and realistic. To express this
formally, we identify four main types of constraints common
to any problem-space attack:

1) Available transformations, which describe which modi-
fications can be performed in the problem-space by the
attacker (e.g., only addition and not removal).

2) Preserved semantics, the semantics to be preserved
while mutating z to z′, with respect to specific feature
abstractions which the attacker aims to be resilient
against (e.g., in programs, the transformed object may
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need to produce the same dynamic call traces). Seman-
tics may also be preserved by construction [e.g., 58].

3) Plausibility (or Inconspicuousness), which describes
which (qualitative) properties must be preserved in mu-
tating z to z′, so that z appears realistic upon manual
inspection. For example, often an adversarial image
must look like a valid image from the training distribu-
tion [16]; a program’s source code must look manually
written and not artificially or inconsistently altered [58].
In the general case, verification of plausibility may be
hard to automate and may require human analysis.

4) Robustness to preprocessing, which determines which
non-ML techniques could disrupt the attack (e.g., filter-
ing in images, dead code removal in programs).

These constraints have been sparsely mentioned in prior
literature [11, 12, 58, 74], but have never been identified
together as a set for problem-space attacks. When designing
a novel problem-space attack, it is fundamental to explicitly
define these four types of constraints, to clarify strengths and
weaknesses. While we believe that this framework captures
all nuances of the current state-of-the-art for a thorough
evaluation and comparison, we welcome future research that
uses this as a foundation to identify new constraints.

We now introduce formal definitions for the constraints.
First, similarly to [11, 23], we define the space of available
transformations.

Definition 8 (Available Transformations). We define T as
the space of available transformations, which determines
which types of automated problem-space transformations T
the attacker can perform. In general, it determines if and how
the attacker can add, remove, or edit parts of the original object
z ∈ Z to obtain a new object z′ ∈ Z . We write T ∈ T if a
transformation sequence consists of available transformations.

For example, the pixels of an image may be modified only
if they remain within the range of integers 0 to 255 [e.g., 16];
in programs, an adversary may only add valid no-op API calls
to ensure that modifications preserve functionality [e.g., 60].

Moreover, the attacker needs to ensure that some semantics
are preserved during the transformation of z, according to
some feature abstractions. Semantic equivalence is known
to be generally undecidable [10, 58]; hence, as in [10], we
formalize semantic equivalence through testing, by borrowing
notation from denotational semantics [57].

Definition 9 (Preserved Semantics). Let us consider two
problem-space objects z and z′ = T(z), and a suite of
automated tests Υ to verify preserved semantics. We define
z and z′ to be semantically equivalent with respect to Υ if
they satisfy all its tests τ ∈ Υ, where τ : Z × Z −→ B. In
particular, we denote semantics equivalence with respect to a
test suite Υ as follows:

JzKτ = Jz′Kτ , ∀τ ∈ Υ , (4)

where JzKτ denotes the semantics of z induced during test τ .

Informally, Υ consists of tests that are aimed at evaluating

whether z and z′ (or parts of them) lead to the same abstract
representations in a certain feature space. In other words,
the tests in Υ model preserved semantics. For example, in
programs a typical test aims to verify that malicious func-
tionality is preserved; this is done through tests where, given
a certain test input, the program produces exactly the same
output [10]. Additionally, the attacker may want to ensure that
an adversarial program (z′) leads to the same instruction trace
as its benign version (z)—so as not to raise suspicion in feature
abstractions derived from dynamic analysis.

Plausibility is more subjective than semantic equivalence,
but in many scenarios it is critical that an adversarial object is
inconspicuous when manually audited by a human. In order
to be plausible, an analyst must believe that the adversarial
object is a valid member of the problem-space distribution.

Definition 10 (Plausibility). We define Π as the set of (typi-
cally) manual tests to verify plausibility. We say z looks like
a valid member of the data distribution to a human being if it
satisfies all tests π ∈ Π, where π : Z −→ B.

Plausibility is often hard to verify automatically; previous
work has often relied on user studies with domain experts to
judge the plausibility of the generated objects (e.g., program
plausibility in [58], realistic eyeglass frames in [62]). Plau-
sibility in software-related domains may also be enforced by
construction during the transformation process, e.g., by relying
on automated software transplantation [10, 75].

In addition to semantic equivalence and plausibility, the
adversarial problem-space objects need to ensure they are
robust to non-ML automated preprocessing techniques that
could alter properties on which the adversarial attack depends,
thus compromising the attack.

Definition 11 (Robustness to Preprocessing). We define Λ
as the set of preprocessing operators an object z′ = T(z)
should be resilient to. We say z′ is robust to preprocessing if
A(T(z)) = T(z) for all A ∈ Λ, where A : Z −→ Z simulates
an expected preprocessing.

Examples of preprocessing operators in Λ include compres-
sion to remove pixel artifacts (in images), filters to remove
noise (in audio), and program analysis to remove dead or
redundant code (in programs).

Properties affected by preprocessing are often related to
fragile and spurious features learned by the target classifier.
While taking advantage of such features may be necessary to
demonstrate the weaknesses of the target model, an attacker
should be aware that these brittle features are usually the first
to change when a model is improved. Given this, a stronger
attack is one that does not rely on them.

As a concrete example, in an attack on authorship attri-
bution, Quiring et al. [58] purposefully omit layout features
(such as the use of spaces vs. tabs) which are trivial to change.
Additionally, Xu et al. [74] discovered the presence of font
objects was a critical (but erroneously discriminative) feature
following their problem-space attack on PDF malware. These
are features that are cheap for an attacker to abuse but can be
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easily removed by the application of some preprocessing. As
a defender, investigation of this constraint will help identify
features that are weak to adversarial attacks. Note that knowl-
edge of preprocessing can also be exploited by the attacker
(e.g., in scaling attacks [73]).

We can now define a fundamental set of problem-space
constraint elements from the previous definitions.

Definition 12 (Problem-Space Constraints). We define the
problem-space constraints Γ = {T ,Υ,Π,Λ} as the set of
all constraints satisfying T ,Υ,Π,Λ. We write T(z) |= Γ if
a transformation sequence applied to object z ∈ Z satisfies
all the problem-space constraints, and we refer to this as a
valid transformation sequence. The problem-space constraints
Γ determine the feature-space constraints Ω, and we denote
this relationship as Γ ` Ω (i.e., Γ determines Ω); with a slight
abuse of notation, we can also write that Ω ⊆ Γ, because
some constraints may be specific to the problem space (e.g.,
program size similar to that of benign applications) and may
not be possible to enforce in the feature space X .

Side-Effect Features. Satisfying the problem-space con-
straints Γ further complicates the inverse feature mapping,
as Γ is a superset of Ω. Moreover, enforcing Γ may require
substantially altering an object z to ensure satisfaction of all
constraints during mutations. Let us focus on an example in
the software domain, so that z is a program with features x;
if we want to transform z to z′ such that ϕ(z′) = x + δ,
we may want to add to z a program o where ϕ(o) = δ.
However, the union of z and o may have features different
from x + δ, because other consolidation operations are re-
quired (e.g., name deduplication, class declarations, resource
name normalization)—which cannot be feasibly computed in
advance for each possible object in Z . Hence, after modifying
z in an attempt to obtain a problem-space object z′ with certain
features (e.g., close to x + δ), the attacker-modified object
may have some additional features that are not related to the
intended transformation (e.g., adding an API which maps to a
feature in δ), but are required to satisfy all the problem-space
constraints in Γ (e.g., inserting valid parameters for the API
call, and importing dependencies for its invocation). We call
side-effect features η the features that are altered in z′ = T(z)
specifically for the satisfaction of problem-space constraints.
We observe that these features do not follow any particular
direction of the gradient, and hence they could have both a
positive or negative impact on the classification score.

Analogy with Projection. Figure 1 presents an analogy
between side-effect features η and the notion of projection in
numerical optimization [14], which helps explain the nature
and impact of η in problem-space attacks. The right half
corresponds to higher values of a discriminant function h(x)
and the left half to lower values. The vertical central curve
(where the heatmap value is equal to zero) represents the
decision boundary: objects on the left-half are classified as
negative (e.g., benign), and objects on the right-half as positive
(e.g., malicious). The goal of the adversary is to conduct a
maximum confidence attack that has an object misclassified

Ω

Γ

Γ

x

x + δ*

x + δ* + η

Fig. 1. Example of projection of the feature-space attack vector x+δ∗ in the
feasible problem space, resulting in side-effect features η. The background
displays the value of the discriminant function h(x), where negative values
indicate the target class of the evasion attack. Small arrows represent directions
of the negative gradient. The thick solid line represents the feasible feature
space determined by Ω, and the thin solid line that determined by Γ (which
is more restrictive). The dotted arrow represents the gradient-based attack
x+ δ∗ derived from x, which is then projected into x+ δ∗ + η to fit into
the feasible problem space.

as the negative class. The thick solid line represents the
feasible feature space determined by constraints Ω, and the
thin solid line the feasible problem space determined by Γ
(which corresponds to two unconnected areas). We assume that
the initial object x ∈ X is always within the feasible problem
space. In this example, the attacker first conducts a gradient-
based attack in the feature space on object x, which results in
a feature vector x + δ∗, which is classified as negative with
high-confidence. However, this point is not in the feasibility
space of constraints Γ, which is more restrictive than that of Ω.
Hence, the attacker needs to find a projection that maps x+δ∗

back to the feasible problem-space regions, which leads to the
addition of a side-effect feature vector η.

Definition 13 (Side-Effect Feature Vector). We define η as the
side-effect feature vector that results from enforcing Γ while
choosing a sequence of transformations T such that T(z) |= Γ.
In other words, η are the features derived from the projection
of a feature-space attack onto a feasibility region that satisfies
problem-space constraints Γ.

We observe that in settings where the feature mapping ϕ is
neither differentiable nor invertible, and where the problem-
space representation is very different from the feature-space
representation (e.g., unlike in images or audio), it is generally
infeasible or impossible to compute the exact impact of side-
effect features on the objective function in advance—because
the set of problem-space constraints Γ cannot be expressed
analytically in closed-form. Hence the attacker needs to find
a transformation sequence T such that ϕ(T(z)) = ϕ(z′) is
within the feasibility region of problem-space constraints Γ.

It is relevant to observe that, in the general case, if an object
zo is added to (or removed from) two different objects z1 and
z2, it is possible that the resulting side-effect feature vectors
η1 and η2 are different (e.g., in the software domain [58]).
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Considerations on Attack Confidence. There are some im-
portant characteristics of the impact of the side-effect features
η on the attack objective function. If the attacker performs
a maximum-confidence attack in the feature space under con-
straints Ω, then the confidence of the problem-space attack
will always be lower or equal than the one in the feature-
space attack. This is intuitively represented in Figure 1, where
the point is moved to the maximum-confidence attack area
within Ω, and the attack confidence is reduced after projection
to the feasibility space of the problem space, induced by Γ.
In general, the confidence of the feature- and problem-space
attacks could be equal, depending on the constraints Ω and
Γ, and on the shape of the discriminant function h, which
is also not necessarily convex (e.g., in deep learning [29]).
In the case of low-confidence feature-space attacks, projecting
into the problem-space feasibility constraint may result in a
positive or negative impact (not known a priori) on the value
of the discriminant function. This can be seen from Figure 1,
where the object x + δ∗ would be found close to the center
of the plot, where h(x) = 0.

Problem-Space Attack. We now have all the components
required to formalize a problem-space attack.

Definition 14 (Problem-Space Attack). We define a problem-
space attack as the problem of finding the sequence of valid
transformations T for which the object z ∈ Z with label y ∈ Y
is misclassified to a target class t ∈ Y as follows:

argminT∈T ft(ϕ(T(z))) = ft(x+ δ∗ + η) (5)
subject to: JzKτ = JT(z)Kτ , ∀τ ∈ Υ (6)

π(T(z)) = 1, ∀π ∈ Π (7)
A(T(z)) = T(z), ∀A ∈ Λ (8)

where η is a side-effect feature vector that separates the feature
vector generated by T(z) from the theoretical feature-space
attack x + δ∗ (under constraints Ω). An equivalent, more
compact, formulation is as follows:

argminT∈T ft(ϕ(T(z))) = ft(x+ δ∗ + η) (9)
subject to: T(z) |= Γ . (10)

Search Strategy. The typical search strategy for adversarial
perturbations in feature-space attacks is based on follow-
ing the negative gradient of the objective function through
some numerical optimization algorithm, such as stochastic
gradient descent [11, 16, 17]. However, it is not possible to
directly apply gradient descent in the general case of problem-
space attacks, when the feature space is not invertible nor
differentiable [11, 58]; and it is even more complicated if
a transformation sequence T produces side-effect features
η 6= 0. In the problem space, we identify two main types
of search strategy: problem-driven and gradient-driven. In
the problem-driven approach, the search of the optimal T
proceeds heuristically by beginning with random mutations
of the object z, and then learning from experience how to
appropriately mutate it further in order to misclassify it to
the target class (e.g., using Genetic Programming [74] or

variants of Monte Carlo tree search [58]). This approach
iteratively uses local approximations of the negative gradient
to mutate the objects. The gradient-driven approach attempts
to identify mutations that follow the negative gradient by
relying on an approximate inverse feature mapping (e.g., in
PDF malware [46], in Android malware [75]). If a search
strategy equally makes extensive use of both problem-driven
and gradient-driven methods, we call it a hybrid strategy.
We note that search strategies may have different trade-offs
in terms of effectiveness and costs, depending on the time
and resources they require. While there are some promising
avenues in this challenging but important line of research [39],
it warrants further investigation in future work.

Feature-space attacks can still give us some useful in-
formation: before searching for a problem-space attack, we
can verify whether a feature-space attack exists, which is a
necessary condition for realizing the problem-space attack.

Theorem 1 (Necessary Condition for Problem-Space Attacks).
Given a problem-space object z ∈ Z of class y ∈ Y , with
features ϕ(z) = x, and a target class t ∈ Y , t 6= y, there
exists a transformation sequence T that causes T(z) to be
misclassified as t only if there is a solution for the feature-
space attack under constraints Ω. More formally, only if:

∃δ∗ = arg min
δ∈Rn:δ|=Ω

ft(x+ δ) : ft(x+ δ∗) < 0 . (11)

The proof of Theorem 1 is in Appendix C. We observe that
Theorem 1 is necessary but not sufficient because, although it
is not required to be invertible or differentiable, some sort of
“mapping” between problem- and feature-space perturbations
needs to be known by the attacker. A sufficient condition for a
problem-space attack, reflecting the attacker’s ideal scenario,
is knowledge of a set of problem-space transformations which
can alter feature values arbitrarily. This describes the scenario
for some domains, such as images [16, 30], in which the
attacker can modify any pixel value of an image independently.

Theorem 2 (Sufficient Condition for Problem-Space Attacks).
Given a problem-space object z ∈ Z of class y ∈ Y , with
features ϕ(z) = x, and a target class t ∈ Y , t 6= y, there exists
a transformation sequence T that causes x to be misclassified
as t if Equation 11 and Equation 12 are satisfied:

∃δ∗ = arg min
δ∈Rn:δ|=Ω

ft(x+ δ) : ft(x+ δ∗) < 0 (11)

∀δ ∈ Rn : δ |= Ω, ∃T : T(z) |= Γ, ϕ(T(z)) = x+ δ (12)

Informally, an attacker is always able to find a problem-space
attack if a feature-space attack exists (necessary condition) and
they know problem-space transformations that can modify any
feature by any value (sufficient condition).

The proof of Theorem 2 is in Appendix C. In the general
case, while there may exist an optimal feature-space perturba-
tion δ∗, there may not exist a problem-space transformation
sequence T that alters the feature space of T(z) exactly so that
ϕ(T(z)) = x+ δ∗. This is because, in practice, given a target
feature-space perturbation δ∗, a problem-space transformation
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may generate a vector ϕ(T(z)) = x+δ∗+η∗, where η∗ 6= 0
(i.e., where there may exist at least one i for which ηi 6= 0)
due to the requirement that problem-space constraints Γ must
be satisfied. This prevents easily finding a problem-space
transformation that follows the negative gradient. Given this,
the attacker is forced to apply some search strategy based on
the available transformations.

Corollary 2.1. If Theorem 2 is satisfied only on a subset
of feature dimensions Xi in X , which collectively create
a subspace Xeq ⊂ X , then the attacker can restrict the
search space to Xeq , for which they know that an equivalent
problem/feature-space manipulation exists.

C. Describing problem-space attacks in different domains

Table I illustrates the main parameters that need to be
explicitly defined while designing problem-space attacks by
considering a representative set of adversarial attacks in dif-
ferent domains: images [16], facial recognition [62], text [56],
PDFs [74], Javascript [27], code attribution [58], and three
problem-space attacks applicable to Android: two from the
literature [60, 75] and ours proposed in §III.

This table shows the expressiveness of our formalization,
and how it is able to reveal strengths and weaknesses of
different proposals. In particular, we identify some major
limitations in two recent problem-space attacks [60, 75].
Rosenberg et al. [60] leave artifacts during the app transfor-
mation which are easily detected without the use of machine
learning (see §VI for details), and relies on no-op APIs which
could be removed through dynamic analysis. Yang et al. [75]
do not specify which preprocessing they are robust against,
and their approach may significantly alter the semantics of the
program—which may account for the high failure rate they
observe in the mutated apps. This inspired us to propose a
novel attack that overcomes such limitations.

III. ATTACK ON ANDROID

Our formalization of problem-space attacks has allowed
for the identification of weaknesses in prior approaches to
malware evasion applicable to Android [60, 75]. Hence, we
propose—through our formalization—a novel problem-space
attack in this domain that overcomes these limitations, es-
pecially in terms of preserved semantics and preprocessing
robustness (see §II-C and §VI for a detailed comparison).

A. Threat Model

We assume an attacker with perfect knowledge θPK =
(D,X , g,w) (see Appendix B for details on threat models).
This follows Kerckhoffs’ principle [37] and ensures a defense
does not rely on “security by obscurity” by unreasonably as-
suming some properties of the defense can be kept secret [19].
Although deep learning has been extensively studied in adver-
sarial attacks, recent research [e.g., 55] has shown that—if re-
trained frequently—the DREBIN classifier [8] achieves state-
of-the-art performance for Android malware detection, which
makes it a suitable target classifier for our attack. DREBIN

relies on a linear SVM, and embeds apps in a binary feature-
space X which captures the presence/absence of components
in Android applications in Z (such as permissions, URLs,
Activities, Services, strings). We assume to know classifier
g and feature-space X , and train the parameters w with
SVM hyperparameter C = 1, as in the original DREBIN
paper [8]. Using DREBIN also enables us to evaluate the
effectiveness of our problem-space attack against a recently
proposed hardened variant, Sec-SVM [23]. Sec-SVM enforces
more evenly distributed feature weights, which require an
attacker to modify more features to evade detection.

We consider an attacker intending to evade detection based
on static analysis, without relying on code obfuscation as it
may increase suspiciousness of the apps [67, 69] (see §V).

B. Available Transformations

We use automated software transplantation [10] to extract
slices of bytecode (i.e., gadgets) from benign donor appli-
cations and inject them into a malicious host, to mimic the
appearance of benign apps and induce the learning algorithm
to misclassify the malicious host as benign.1 An advantage
of this process is that we avoid relying on a hardcoded set
of transformations [e.g., 58]; this ensures adaptability across
different application types and time periods. In this work, we
consider only addition of bytecode to the malware—which
ensures that we do not hinder the malicious functionality.

Organ Harvesting. In order to augment a malicious host
with a given benign feature Xi, we must first extract a
bytecode gadget ρ corresponding to Xi from some donor
app. As we intend to produce realistic examples, we use
program slicing [71] to extract a functional set of statements
that includes a reference to Xi. The final gadget consists of the
this target reference (entry point Lo), a forward slice (organ
o), and a backward slice (vein v). We first search for Lo,
corresponding to an appearance of code corresponding to the
desired feature in the donor. Then, to obtain o, we perform a
context-insensitive forward traversal over the donor’s System
Dependency Graph (SDG), starting at the entry point, tran-
sitively including all of the functions called by any function
whose definition is reached. Finally, we extract v, containing
all statements needed to construct the parameters at the entry
point. To do this, we compute a backward slice by traversing
the SDG in reverse. Note that while there is only one organ,
there are usually multiple veins to choose from, but only one
is necessary for the transplantation. When traversing the SDG,
class definitions that will certainly be already present in the
host are excluded (e.g., system packages such as android and
java). For example, for an Activity feature where the variable
intent references the target Activity of interest, we might
extract the invocation startActivity(intent) (entry point
Lo), the class implementation of the Activity itself along with

1Our approach is generic and it would be immediate to do the opposite,
i.e., transplant malicious code into a benign app. However, this would require
a dataset with annotated lines of malicious code. For this practical reason and
for the sake of clarity of this section, we consider only the scenario of adding
benign code parts to a malicious app.
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TABLE I
PROBLEM-SPACE EVASION ATTACKS FROM PRIOR WORK ACROSS DIFFERENT SETTINGS AND DOMAINS, MODELED WITH OUR FORMALIZATION.

DOMAINS

Image
Classification [16]

Facial
Recognition [62]

Audio [17] Text [43] Code
Attribution [58]

Javascript [27] PDF [74] Windows [38] Windows RNN [60] Android
Transplantation [75]

Our Android
Attack (see §III)

T
H

R
E

A
T

M
O

D
E

L

Knowledge θ PK. PK. PK. PK and ZK. ZK. ZK. ZK. PK. ZK. ZK. PK.

Feature
mapping ϕ

Invertible: no.
Differentiable: yes.

Invertible: no.
Differentiable: yes.

Invertible: no.
Differentiable: yes.

Invertible: no.
Differentiable: yes.

Invertible: no.
Differentiable: no.

Invertible: no.
Differentiable: no.

Invertible: no.
Differentiable: no.

Invertible: no.
Differentiable: no.

Invertible: no.
Differentiable: no.

Invertible: no.
Differentiable: no.

Invertible: no.
Differentiable: no.

Feature
space X

Latent feature space
of pixels.

Latent feature space
of pixels.

Latent feature space
of audio stream.

Latent feature space
of word embeddings.

Syntactic and lexical
static features.

Static syntactic,
based on AST, PDG,
CFG.

Static (metadata,
object keywords and
properties, structural).

Feature mapping of
MalConv [59].

Dynamic API
sequences, static
printable strings (also
in latent feature
space).

Static analysis
(RTLD model [75]).

Lightweight static
analysis (binary
features).

Problem
space Z

Image (pixels). Printed image
(pixels).

Audio (signal). Text. Software (source
code).

Software (source
code).

PDF. Software (binary). Software (bytecode). Software (bytecode). Software (bytecode).

Classifier g Deep learning. Deep learning. Deep learning. LR, CNN, LSTM
(PK) and numerous
major cloud services
(ZK).

Any classifier. Any classifier. SVM-RBF
(Hidost [64]),
RF (PDFRate [63]).

Deep learning
(MalConv [59]).

RNN/LSTM variants,
and transferability to
traditional classifiers
(e.g., RF, SVM).

kNN, DT, SVM (and
VirusTotal [70]).

Linear SVM
(DREBIN [8]) and its
hardened version
(Sec-SVM [23]).

P
R

O
B

L
E

M
-S

PA
C

E
C

O
N

S
T

R
A

IN
T

S

Available
Transformations
T

(i) Modification of
pixel values
(x + δ ∈ [0, 1]n).
(ii) Pixel values must
be integers from 0 to
255 (discretization
problem).

(i) Modification of
pixel values
(x + δ ∈ [0, 1]n).
(ii) Pixel values must
be integers from 0 to
255. (iii) Pixels are
printable. (iv) Robust
to 3D rotations.

(i) Addition of audio
noise. (ii) Audio
values bounded (i.e.,
x + δ ∈ [−M,+M]).

(i) Character-level
perturbations.
(ii) Word-level
perturbations.

(i) Pre-defined set of
semantics-preserving
code transformations
(i.e., modifications).
(ii) No changes to the
layout of the code.

Transplantation of
semantically-
equivalent benign
ASTs.

Addition/Removal of
elements in the PDF
tree structure.

Addition of
carefully-crafted
bytes at the end of
the binary.

(i) Addition of no-op
API calls with valid
parameters.
(ii) Repacking of the
input malware.

Code addition and
modification (within
the same program)
through automated
software
transplantation.

Code addition
through automated
software
transplantation.

Preserved
Semantics
Υ

An image should not
trivially become an
image of another
class, so perturbation
is constrained
||δ||p ≤ δmax .

Human subjects
retain their original
identity and their
recognizability to
other humans
(compared to using
full face masks,
disguises, etc).

Semantics of original
audio preserved by
constraining the
perturbation
(dBx(δ) ≤ dBmax).

Sentence meaning
preserved by
(i) replacing like
characters (ii) using
the GloVe model [56]
to swap semantically
(not syntactically)
similar words.

Source code
semantics preserved
by construction
through use of
semantics-preserving
transformations.

Malicious semantics
preserved by
construction through
use of AST-based
transplantation.

Malicious network
functionality is still
present (verification
with Cuckoo
Sandbox).

Malicious code is
unaffected by only
appending redundant
bytes.

API sequences and
function return values
are unchanged
(verification with
Cuckoo Monitor).

Malicious semantics
preserved, tested by
installing and
executing each
application.

Malicious semantics
preserved by
construction with
opaque predicates
(newly inserted code
is not executed at
runtime).

Robustness to
Preprocessing
Λ

None explicitly
considered.

Discussed but not
robust to: the use of
specific illumination
or distance of the
camera.

Robust to:
(i) Addition of
pointwise random
noise (ii) MP3
compression.
Discussed but not
robust to:
Over-the-air playing.

Not explicitly
considered.

Robust to: removal of
layout features (i.e.,
use of tabs vs spaces)
which are trivial to
alter.

Robust to: removal of
name inconsistencies
of functions and
variables.

Discussed but not
robust to: removal of
spurious features
such as presence or
absence of font
objects (discovered
post-attack).

Discussed but not
robust to: removal of
redundant (non-text)
bytes.

Robust to: removal of
redundant code,
undeclared variables,
unlinked resources,
undefined references,
name conflicts.

Not explicitly
considered.

Robust to: removal of
redundant code,
undeclared variables,
unlinked resources,
undefined references,
name conflicts, no-op
instructions.

Plausibility
Π

Perturbation
constrained
(||δ||p ≤ δmax),
to ensure the changes
are imperceptible to a
human.

(i) Perturbation
constrained
(||δ||p ≤ δmax),
(ii) Smooth pixel
transitions so the
eyeglass frames look
legitimate with
plausible deniability.

Perturbation
constrained
(dBx(δ) ≤ dBmax),
so that added noise
resembles white
background noise
largely imperceptible
to a human.

(i) Ensure short
distance (e.g., edit
distance) of
modifications
(ii) User study to
verify plausibility.

The code does not
look suspicious and
seems written by a
human (survey with
developers).

By construction
through automated
AST transplantation
(although plausibility
is inhibited if certain
objects are used, e.g.,
obsolete ActiveX
components).

PDFs can still be
parsed and opened by
a reader.

None explicitly
considered.

The added no-op API
calls do not raise
errors.

Code is realistic by
construction through
automated software
transplantation.

(i) Code is realistic
by construction
through use of
automated software
transplantation.
(ii) Mutated apps
install and start on an
emulator.

O
T

H
E

R

Search Strategy Gradient-driven.
Stochastic Gradient
Descent in the
feature space.

Gradient-driven.
Stochastic Gradient
Descent in the
feature space.

Gradient-driven.
Adam optimizer with
learning rate 10 and
5,000 max iterations.

Hybrid (PK).
Gradients used to
choose ‘top’ words.
Problem-driven
(ZK). Without
gradients, importance
of words is estimated
by scoring without
each word.

Problem-driven.
New Monte-Carlo
Search algorithm,
applied to the
problem space.

Problem-driven.
Search of isomorphic
sub-AST graphs in
benign samples that
are equivalent to
malicious sub-ASTs.

Problem-driven.
Genetic
Programming.

Gradient-driven.
Although the feature
mapping is not
invertible and not
differentiable, the
authors devise an
algorithm to project
byte padding on to
the negative gradient.

Hybrid. Greedy
algorithm selects API
calls in order to
minimize difference
between current and
previous iterations
w.r.t. the direction of
the Jacobian.

Gradient-driven.
Prioritizing mutations
that affect features
typical of malware
evolution (e.g.,
phylogenetic trees)
and those present in
both malware and
goodware.

Gradient-driven. We
use an approximate
inverse of the feature
mapping, and then a
greedy algorithm in
the problem space to
follow the negative
gradient.

Side-effect
features η

η = 0 η = 0 η = 0 η = 0 η ' 0 η 6= 0 η ' 0 η = 0 η ' 0 η 6= 0 η 6= 0
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any referenced classes (organ o), and all statements necessary
to construct intent with its parameters (vein v). There is
a special case for Activities which have no corresponding
vein in the bytecode (e.g., a MainActivity or an Activity
triggered by an intent filter declared in the Manifest); here,
we provide an adapted vein, a minimal Intent creation and
startActivity() call adapted from a previously mined
benign app that will trigger the Activity. Note that organs with
original veins are always prioritized above those without.

Organ Implantation. In order to implant some gadget
ρ into a host, it is necessary to identify an injection point
LH where v should be inserted. Implantation at LH should
fulfill two criteria: firstly, it should maintain the syntactic
validity of the host; secondly, it should be as unnoticeable as
possible so as not to contribute to any violation of plausibility.
To maximize the probability of fulfilling the first criterion,
we restrict LH to be between two statements of a class
definition in a non-system package. For the second criterion,
we take a heuristic approach by using Cyclomatic Complexity
(CC)—a software metric that quantifies the code complexity of
components within the host—and choosing LH such that we
maintain existing homogeneity of CC across all components.
Finally, the host entry point LH is inserted into a randomly
chosen function among those of the selected class, to avoid
creating a pattern that might be identified by an analyst.

C. Preserved Semantics

Given an application z and its modified (adversarial) version
z′, we aim to ensure that z and z′ lead to the same dynamic
execution, i.e., the malicious behavior of the application is
preserved. We enforce this by construction by wrapping the
newly injected execution paths in conditional statements that
always return False. This guarantees the newly inserted code
is never executed at runtime—so users will not notice anything
odd while using the modified app. In §III-D, we describe how
we generate such conditionals without leaving artifacts.

To further preserve semantics, we also decide to omit
intent-filter elements as transplantation candidates. For
example, an intent-filter could declare the app as an
eligible option for reading PDF files; consequently, whenever
attempting to open a PDF file, the user would be able to choose
the host app, which (if selected) would trigger an Activity
defined in the transplanted benign bytecode—violating our
constraint of preserving dynamic functionality.

D. Robustness to Preprocessing

Program analysis techniques that perform redundant code
elimination would remove unreachable code. Our evasion
attack relies on features associated with the transplanted code,
and to preserve semantics we need conditional statements that
always resolve to False at runtime; so, we must subvert static
analysis techniques that may identify that this code is never ex-
ecuted. We achieve this by relying on opaque predicates [51],
i.e., carefully constructed obfuscated conditions where the
outcome is always known at design time (in our case, False),
but the actual truth value is difficult or impossible to determine

during a static analysis. We refer the reader to Appendix D
for a detailed description of how we generate strong opaque
predicates and make them look legitimate.

E. Plausibility

In our model, an example is satisfactorily plausible if it
resembles a real, functioning Android application (i.e., is a
valid member of the problem-space Z). Our methodology
aims to maximize the plausibility of each generated object by
injecting full slices of bytecode from real benign applications.
There is only one case in which we inject artificial code: the
opaque predicates that guard the entry point of each gadget
(see Appendix D for an example). In general, we can conclude
that plausibility is guaranteed by construction thanks to the use
of automated software transplantation [10]. This contrasts with
other approaches that inject standalone API calls and URLs
or no-op operations [e.g., 60] that are completely orphaned
and unsupported by the rest of the bytecode (e.g., an API call
result that is never used).

We also practically assess that each mutated app still
functions properly after modification by installing and run-
ning it on an Android emulator. Although we are unable to
thoroughly explore every path of the app in this automated
manner, it suffices as a smoke test to ensure that we have not
fundamentally damaged the structure of the app.

F. Search Strategy

We propose a gradient-driven search strategy based on a
greedy algorithm, which aims to follow the gradient direction
by transplanting a gadget with benign features into the mali-
cious host. There are two main phases: Initialization (Ice-Box
Creation) and Attack (Adversarial Program Generation). This
section offers an overview of the proposed search strategy, and
the detailed steps are reported in Appendix F.

Initialization Phase (Ice-Box Creation). We first harvest
gadgets from potential donors and collect them in an ice-
box G, which is used for transplantation at attack time. The
main reason for this, instead of looking for gadgets on-the-fly,
is to have an immediate estimate of the side-effect features
when each gadget is considered for transplantation. Looking
for gadgets on-the-fly is possible, but may lead to less optimal
solutions and uncertain execution times.

For the initialization we aim to gather gadgets that move
the score of an object towards the benign class (i.e., negative
score), hence we consider the classifier’s top nf benign
features (i.e., with negative weight). For each of the top-nf
features, we extract nd candidate gadgets, excluding those that
lead to an overall positive (i.e., malicious) score. We recall that
this may happen even for benign features since the context
extracted through forward and backward slicing may contain
many other features that are indicative of maliciousness. We
empirically verify that with nf = 500 and nd = 5 we are
able to create a successfully evasive app for all the malware
in our experiments. To estimate the side-effect feature vectors
for the gadgets, we inject each into a minimal app, i.e., an
Android app we developed with minimal functionality (see
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Appendix F). It is important to observe that the ice-box can
be expanded over time, as long as the target classifier does not
change its weights significantly. Algorithm 1 in Appendix F
reports the detailed steps of the initialization phase.

Attack Phase. We aim to automatically mutate z into z′

so that it is misclassified as goodware, i.e., h(ϕ(z′)) < 0, by
transplanting harvested gadgets from the ice-box G. First we
search for the list of ice-box gadgets that should be injected
into z. Each gadget ρj in the ice-box G has feature vector
rj which includes the desired feature and side-effect features.
We consider the actual feature-space contribution of gadget
i to the malicious host z with features x by performing the
set difference of the two binary vectors, rj ∧ ¬x. We then
sort the gadgets in order of decreasing negative contribution,
which ideally leads to a faster convergence of z’s score to
a benign value. Next we filter this candidate list to include
gadgets only if they satisfy some practical feasibility criteria.
We define a check feasibility function which implements some
heuristics to limit the excessive increase of certain statistics
which would raise suspiciousness of the app. Preliminary
experiments revealed a tendency to add too many permissions
to the Android Manifest, hence, we empirically enforce that
candidate gadgets add no more than 1 new permission to the
host app. Moreover, we do not allow addition of permissions
listed as dangerous in the Android documentation [5]. The
other app statistics remain reasonably within the distribution of
benign apps (more discussion in §IV), and so we decide not to
enforce a limit on them. The remaining candidate gadgets are
iterated over and for each candidate ρj , we combine the gadget
feature vector rj with the input malware feature vector x, such
that x′ = x ∨ rj . We repeat this procedure until the updated
x′ is classified as goodware (for low-confidence attacks) or
until an attacker-defined confidence level is achieved (for high-
confidence attacks). Finally, we inject all the candidate gadgets
at once through automated software transplantation, and check
that problem-space constraints are verified and that the app is
still classified as goodware. Algorithm 2 in Appendix F reports
the detailed steps of the attack phase.

IV. EXPERIMENTAL EVALUATION

We evaluate the effectiveness of our novel problem-space
Android attack, in terms of success rate and required time—
and also when in the presence of feature-space defenses.

A. Experimental Settings

Prototype. We create a prototype of our novel problem-
space attack (§III) using a combination of Python for the ML
functionality and Java for the program analysis operations; in
particular, to perform transplantations in the problem-space
we rely on FlowDroid [9], which is based on Soot [68]. We
release the code of our prototype to other academic researchers
(see §VII). We ran all experiments on an Ubuntu VM with 48
vCPUs, 290GB of RAM, and NVIDIA Tesla K40 GPU.

Classifiers. As defined in the threat model (§III-A), we
consider the DREBIN classifier [8], based on a binary feature
space and a linear SVM, and its recently proposed hardened

variant, Sec-SVM [23], which requires the attacker to modify
more features to perform an evasion. We use hyperparameter
C=1 for the linear SVM as in [8], and identify the optimal Sec-
SVM parameter k = 0.25 (i.e., the maximum feature weight)
in our setting by enforcing a maximum performance loss of
2% AUC. See Appendix E for implementation details.

Attack Confidence. We consider two attack settings: low-
confidence (L) and high-confidence (H). The (L) attack merely
overcomes the decision boundary (so that h(x) < 0). The
(H) attack maximizes the distance from the hyperplane into
the goodware region; while generally this distance is uncon-
strained, here we set it to be ≤ the negative scores of 25% of
the benign apps (i.e., within their interquartile range). This
avoids making superfluous modifications, which may only
increase suspiciousness or the chance of transplantation errors,
while being closer in nature to past mimicry attacks [12].

Dataset. We collect apps from AndroZoo [2], a large-
scale dataset with timestamped Android apps crawled from
different stores, and with VirusTotal summary reports. We use
the same labeling criteria as Tesseract [55] (which is derived
from Miller et al. [49]): an app is considered goodware if it
has 0 VirusTotal detections, as malware if it has 4+ VirusTotal
detections, and is discarded as grayware if it has between
1 and 3 VirusTotal detections. For the dataset composition,
we follow the example of Tesseract and use an average of
10% malware [55]. The final dataset contains ~170K recent
Android applications, dated between Jan 2017 and Dec 2018,
specifically 152,632 goodware and 17,625 malware.

Dataset Split. Tesseract [55] demonstrated that, in non-
stationary contexts such as Android malware, if time-aware
splits are not considered, then the results may be inflated due to
concept drift (i.e., changes in the data distribution). However,
here we aim to specifically evaluate the effectiveness of an
adversarial attack. Although it likely exists, the relationship
between adversarial and concept drift is still unknown and is
outside the scope of this work. If we were to perform a time-
aware split, it would be impossible to determine whether the
success rate of our ML-driven adversarial attack was due to an
intrinsic weakness of the classifier or due to natural evolution
of malware (i.e., the introduction of new non-ML techniques
malware developers rely on to evade detection). Hence, we
perform a random split of the dataset to simulate absence of
concept drift [55]; this also represents the most challenging
scenario for an attacker, as they aim to mutate a test object
coming from the same distribution as the training dataset (on
which the classifier likely has higher confidence). In particular,
we consider a 66% training and 34% testing random split.2

Testing. The test set contains a total of 5,952 malware.
The statistics reported in the remainder of this section refer
only to true positive malware (5,330 for SVM and 4,108
for Sec-SVM), i.e., we create adversarial variants only if the
app is detected as malware by the classifier under evaluation.
Intuitively, it is not necessary to make an adversarial example

2We consider only one split due to the overall time required to run the
experiments. Including some prototype overhead, it requires about one month
to run all configurations.
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Fig. 2. Performance of SVM and Sec-SVM in absence of adversarial attacks.
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Fig. 3. Cumulative distribution of features added to adversarial malware (out
of a total 10,000 features remaining after feature selection).

of a malware application that is already misclassified as
goodware; hence, we avoid inflating results by removing false
negative objects from the dataset. During the transplantation
phase of our problem-space attack some errors occur due to
bugs and corner-case errors in the FlowDroid framework [9].
Since these errors are related on implementation limitations of
the FlowDroid research prototype, and not conceptual errors,
the success rates in the remainder of this section refer only to
applications that did not throw FlowDroid exceptions during
the transplantation phase (see Appendix G for details).

B. Evaluation

We analyze the performance of our Android problem-space
attack in terms of runtime cost and successful evasion rate.
An attack is successful if an app z, originally classified
as malware, is mutated into an app z′ that is classified as
goodware and satisfies the problem-space constraints.

Figure 2 reports the AUROC of SVM and Sec-SVM on the
DREBIN feature space in absence of attacks. As expected [23],
Sec-SVM sacrifices some detection performance in return for
greater feature-space adversarial robustness.

Attack Success Rate. We perform our attack using true
positive malware from the test set, i.e., all malware objects
correctly classified as malware. We consider four settings
depending on the defense algorithm and the attack confidence:
SVM (L), SVM (H), Sec-SVM (L), and Sec-SVM (H). In
absence of FlowDroid exceptions (see Appendix G), we are
able to create an evasive variant for each malware in all four
configurations. In other words, we achieve a misclassification
rate of 100.0% on the successfully generated apps, where
the problem-space constraints are satisfied by construction

(as defined in §III). Figure 3 reports the cumulative distri-
bution of features added when generating evasive apps for the
four different configurations. As expected, Sec-SVM requires
the attacker to modify more features, but here we are no
longer interested in the feature-space properties, since we
are performing a problem-space attack. This demonstrates
that measuring attacker effort with lp perturbations as in the
original Sec-SVM evaluation [23] overestimates the robustness
of the defense and is better assessed using our framework (§II).

While the plausibility problem-space constraint is satisfied
by design by transplanting only realistic existing code, it
is informative to analyze how the statistics of the evasive
malware relate to the corresponding distributions in benign
apps. Figure 4 reports the cumulative distribution of app
statistics across the four settings: the X-axis reports the
statistics values, whereas the Y -axis reports the cumulative
percentage of evasive malware apps. We also shade two gray
areas: a dark gray area between the first quartile q1 and third
quartile q3 of the statistics for the benign applications; the light
gray area refers to the 3σ rule and reports the area within the
0.15% and 99.85% of the benign apps distribution.

Figure 4 shows that while evading Sec-SVM tends to cause
a shift towards the higher percentiles of each statistic, the
vast majority of apps falls within the gray regions in all
configurations. We note that this is just a qualitative analysis to
verify that the statistics of the evasive apps roughly align with
those of benign apps; it is not sufficient to have an anomaly
in one of these statistics to determine that an app is malicious
(otherwise, very trivial rules could be used for malware
detection itself, and this is not the case). We also observe
that there is little difference between the statistics generated
by Sec-SVM and by traditional SVM; this means that greater
feature-space perturbations do not necessarily correspond to
greater perturbations in the problem-space, reinforcing the
feasibility and practicality of evading Sec-SVM.

Runtime Overhead. The time to perform the search strat-
egy occurring in the feature space is almost negligible; the
most demanding operation is in the actual code modification.
Figure 5 depicts the distribution of injection times for our
test set malware which is the most expensive operation in our
approach while the rest is mostly pipeline overhead. The time
spent per app is low: in most cases, less than 100 seconds, and
always less than 2,000 seconds (~33 mins). The low runtime
cost suggests that it is feasible to perform this attack at scale
and reinforces the need for new defenses in this domain.

V. DISCUSSION ON ATTACK AND RESULTS

We provide some deeper discussion on the results of our
novel problem-space attack.

Android Attack Effectiveness. We conclude that it is prac-
tically feasible to evade the state-of-the-art Android malware
classifier DREBIN [8] and its hardened variant, Sec-SVM [23],
and that we are able to automatically generate realistic and
inconspicuous evasive adversarial applications, often in less
than 2 minutes. This shows for the first time that it is possible
to create realistic adversarial applications at scale.
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Fig. 4. Statistics of the evasive malware variants, compared with statistics of benign apps. The dark gray background highlights the area between first and
third quartile of benign applications; the light gray background is based on the 3σ rule and highlights values benign statistics between 0.15% and 99.85%
of the distribution (i.e., spanning 99.7% of the distribution).
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Fig. 5. Violin plots of injection times per adversarial app.

Obfuscation. It could be argued that traditional obfuscation
methods can be used to simply hide malicious functionality.
The novel problem-space attack in this work evaluates the
feasibility of an “adversarial-malware as a service” scenario,
where the use of mass obfuscation may raise the suspicions of
the defender; for example, antivirus companies often classify
samples as malicious simply because they utilize obfuscation
or packing [67, 69]. Moreover, some other analysis methods
combine static and dynamic analysis to prioritize evaluation
of code areas that are likely obfuscated [e.g., 42]. On the
contrary, our transformations aim to be fully inconspicuous
by adding only legitimate benign code and, to the best of our
knowledge, we do not leave any relevant artifact in the process.
While the effect on problem-space constraints may differ
depending on the setting, attack methodologies such as ours
and traditional obfuscation techniques naturally complement
each other in aiding evasion and, in the program domain, code
transplantation may be seen as a tool for developing new forms
of inconspicuous obfuscation [27].

Defense Directions Against Our Attack. A recent promis-
ing direction by Incer et al. [34] studies the use of mono-
tonic classifiers, where adding features can only increase the
decision score (i.e., an attacker cannot rely on adding more
features to evade detection); however, such classifiers require
non-negligible time towards manual feature selection (i.e., on
features that are harder for an attacker to change), and—at

least in the context of Windows malware [34]—they suffer
from high false positives and an average reduction in detection
rate of 13%. Moreover, we remark that we decide to add
goodware parts to malware for practical reasons: the opposite
transplantation would be immediate to do if a dataset with
annotated malicious bytecode segments were available. As
part of future work we aim to investigate whether it would
still be possible to evade monotonic classifiers by adding only
a minimal number of malicious slices to a benign application.

Defenses Against Problem-Space Attacks. Unlike settings
where feature and problem space are closely related (e.g., im-
ages and audio), limitations on feature-space lp perturbations
are often insufficient to determine the risk and feasibility of
an attack in the real world. Our novel problem-space formal-
ization (§II) paves the way to the study of practical defenses
that can be effective in settings which lack an inverse feature
mapping. Simulating and evaluating attacker capabilities in the
problem space helps define realistic threat models with more
constrained modifications in the feature space—which may
lead to more robust classifier design. Our Android evasion
attack (§III) demonstrates for the first time that it is feasible to
evade feature-space defenses such as Sec-SVM in the problem-
space—and to do so en masse.

VI. RELATED WORK

Adversarial Machine Learning. Adversarial ML attacks
have been studied for more than a decade [11]. These attacks
aim to modify objects either at training time (poisoning [65])
or at test time (evasion [12]) to compromise the confidentiality,
integrity, or availability of a machine learning model. Many
formalizations have been proposed in the literature to describe
feature-space attacks, either as optimization problems [12, 16]
(see also §II-A for details) or game theoretic frameworks [21].

Problem-Space Attacks. Recently, research on adversar-
ial ML has moved towards domains in which the feature
mapping is not invertible or not differentiable. Here, the
adversary needs to modify the objects in the problem space
(i.e., input space) without knowing exactly how this will
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affect the feature space. This is known as the inverse feature-
mapping problem [12, 32, 58]. Many works on problem-space
attacks have been explored on different domains: text [3, 43],
PDFs [22, 41, 45, 46, 74], Windows binaries [38, 59, 60],
Android apps [23, 31, 75], NIDS [6, 7, 20, 28], ICS [76],
and Javascript source code [58]. However, each of these
studies has been conducted empirically and followed some
inferred best practices: while they share many commonalities,
it has been unclear how to compare them and what are the
most relevant characteristics that should be taken into account
while designing such attacks. Our formalization (§II) aims to
close this gap, and we show how it can be used to describe
representative feature-space and problem-space attacks from
the literature (§II-C).

Adversarial Android Malware. This paper also proposes a
novel adversarial problem-space attack in the Android domain
(§III); our attack overcomes limitations of existing proposals,
which are evidenced through our formalization. The most
related approaches to our novel attack are on attribution [58],
and on adversarial malware generation [31, 60, 75]. Quiring
et al. [58] do not consider malware detection, but design a
set of simple mutations to change the programming style of
an application to match the style of a target developer (e.g.,
replacing for loops with while loops). This strategy is effective
for attribution, but is insufficient for malware detection as
altering stylometric properties alone would not evade a mal-
ware classifier which captures program semantics. Moreover,
it is not feasible to define a hardcoded set of transformations
for all possible semantics—which may also leave artifacts in
the mutated code. Conversely, our attack relies on automated
software transplantation to ensure plausibility of the generated
code and avoids hardcoded code mutation artifacts.

Grosse et al. [31] perform minimal modifications that pre-
serve semantics, and only modify single lines of code in the
Manifest; but these may be easily detected and removed due
to unused permissions or undeclared classes. Moreover, they
limit their perturbation to 20 features, whereas our problem-
space constraints represent a more realistic threat model.

Yang et al. [75] propose a method for adversarial Android
malware generation. Similarly to us, they rely on automated
software transplantation [10] and evaluate their adversarial
attack against the DREBIN classifier [8]. However, they do
not formally define which semantics are preserved by their
transformation, and their approach is extremely unstable,
breaking the majority of apps they mutate (e.g., they report
failures after 10+ modifications on average—which means
they would likely not be able to evade Sec-SVM [23] which
on average requires modifications of 50+ features). Moreover,
the code is unavailable, and the paper lacks details required
for reevaluating the approach, including any clear descriptions
of preprocessing robustness. Conversely, our attack is resilient
to the insertion of a large number of features (§IV), preserves
dynamic app semantics through opaque predicates (§III-C),
and is resilient against static program analysis (§III-D).

Rosenberg et al. [60] propose a black-box adversarial attack
against Windows malware classifiers that rely on API sequence

call analysis—an evasion strategy that is also applicable to
similar Android classifiers. In addition to the limited focus on
API-based sequence features, their problem-space transforma-
tion leaves two major artifacts which could be detected through
program analysis: the addition of no-operation instructions
(no-ops), and patching of the import address table (IAT).
Firstly, the inserted API calls need to be executed at runtime
and so contain individual no-ops hardcoded by the authors fol-
lowing a practice of “security by obscurity”, which is known
to be ineffective [19, 37]; intuitively, they could be detected
and removed by identifying the tricks used by attackers to
perform no-op API calls (e.g., reading 0 bytes), or by filtering
the “dead” API calls (i.e., which did not perform any real task)
from the dynamic execution sequence before feeding it to the
classifier. Secondly, to avoid requiring access to the source
code, the new API calls are inserted and called using IAT
patching. However, all of the new APIs must be included in a
separate segment of the binary and, as IAT patching is a known
malicious strategy used by malware authors [25], IAT calls
to non-standard dynamic linkers or multiple jumps from the
IAT to an internal segment of the binary would immediately
be identified as suspicious. Conversely, our attack does not
require hardcoding and by design is resilient against traditional
non-ML program analysis techniques.

VII. AVAILABILITY

We release the code and data of our approach to other
researchers by responsibly sharing a private repository. The
project website with instructions to request access is at:
https://s2lab.kcl.ac.uk/projects/intriguing.

VIII. CONCLUSIONS

Since the seminal work that evidenced intriguing properties
of neural networks [66], the community has become more
widely aware of the brittleness of machine learning in ad-
versarial settings [11].

To better understand real-world implications across different
application domains, we propose a novel formalization of
problem-space attacks as we know them today, that enables
comparison between different proposals and lays the foun-
dation for more principled designs in subsequent work. We
uncover new relationships between feature space and problem
space, and provide necessary and sufficient conditions for the
existence of problem-space attacks. Our novel problem-space
attack shows that automated generation of adversarial malware
at scale is a realistic threat—taking on average less than 2
minutes to mutate a given malware example into a variant
that can evade a hardened state-of-the-art classifier.
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APPENDIX

A. Symbol Table

Table II provides a reference for notation and major symbols
used throughout the paper.

B. Threat Model

The threat model must be defined in terms of attacker
knowledge and capability, as in related literature [11, 19, 65].
While the attacker knowledge is represented in the same way
as in the traditional feature-space attacks, their capability also

TABLE II
TABLE OF SYMBOLS.

SYMBOL DESCRIPTION

Z Problem space (i.e., input space).
X Feature space X ⊆ Rn.
Y Label space.
ϕ Feature mapping function ϕ : Z −→ X .
hi Discriminant function hi : X −→ R that

assigns object x ∈ X a score in R (e.g.,
distance from hyperplane) that represents
fitness to class i ∈ Y .

g Classifier g : X −→ Y that assigns object
x ∈ X to class y ∈ Y . Also known as
decision function. It is defined based on
the output of the discriminant functions
hi,∀i ∈ Y .

Ly Loss function Ly : X ×Y −→ R of object
x ∈ X with respect to class y ∈ Y .

fy,κ Attack objective function fy,κ : X × Y ×
R −→ R of object x ∈ X with respect
to class y ∈ Y with maximum confidence
κ ∈ R.

fy Compact notation for fy,0.
Ω Feature-space constraints.
δ δ ∈ Rn is a symbol used to denote a

feature-space perturbation vector.
η Side-effect feature vector.
T Transformation T : Z −→ Z .
T Transformation sequence T = Tn ◦Tn−1 ◦

· · · ◦ T1.
T Space of available transformations.
Υ Suite of automated tests τ ∈ Υ to verify

preserved semantics.
Π Suite of manual tests π ∈ Π to verify

plausibility. In particular, π(z) = 1 if
z ∈ Z is plausible, else π(z) = 0.

Λ Set of preprocessing operators A ∈ Λ for
which z ∈ Z should be resistant (i.e.,
A(T(z)) = T(z)).

Γ Problem-space constraints Γ, consisting of
{Π,Υ, T ,Λ}.

D Training dataset.
w Model hyper-parameters.
Θ Knowledge space.
θ Threat model assumptions θ ∈ Θ; more

specifically, θ = (D,X , g,w). A hat sym-
bol is used if only estimates of parameters
are known. See Appendix B for details.

includes the problem-space constraints Γ. For completeness,
we report the threat model formalization proposed in Biggio
and Roli [11].
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Attacker Knowledge. We represent the knowledge as a
set θ ∈ Θ which may contain (i) training data D, (ii) the
feature set X , (iii) the learning algorithm g, along with the
loss function L minimized during training, (iv) the model
parameters/hyperparameters w. A parameter is marked with
a hat symbol if the attacker knowledge of it is limited or
only an estimate (i.e., D̂, X̂ , ĝ, ŵ). There are three major
scenarios [11]:
• Perfect Knowledge (PK) white-box attacks, in which the

attacker knows all parameters and θPK = (D,X , g,w).
• Limited Knowledge (LK) gray-box attacks, in which the

attacker has some knowledge on the target system. Two
common settings are LK with Surrogate Data (LK-SD),
where θLK−SD = (D̂,X , g, ŵ), and LK with Surrogate
Learners, where θLK−SL = (D̂,X , ĝ, ŵ). Knowledge of
the feature space and the ability to collect surrogate data,
θ ⊇ (D̂,X ), enables the attacker to perform mimicry
attacks in which the attacker manipulates examples to re-
semble the high density region of the target class [12, 28].

• Zero Knowledge (ZK) black-box attacks, where the at-
tacker has no information on the target system, but has
some information on which kind of feature extraction is
performed (e.g., only static analysis in programs, or struc-
tural features in PDFs). In this case, θLK = (D̂, X̂ , ĝ, ŵ).

Note that θPK and θLK imply knowledge of any defenses
used to secure the target system against adversarial examples,
depending on the degree to which each element is known [18].

Attacker Capability. The capability of an attacker is ex-
pressed in terms of his ability to modify feature space and
problem space, i.e., the attacker capability is described through
feature-space constraints Ω and problem-space constraints Γ.

We observe that the attacker’s knowledge and capability can
also be expressed according to the FAIL [65] model as follows:
knowledge of Features X (F), the learning Algorithm g (A),
Instances in training D (I), Leverage on feature space and
problem space with Ω and Γ (L).

More details on the threat models can be found in [11, 65].

C. Theorem Proofs

Proof of Theorem 1. We proceed with a proof by con-
tradiction. Let us consider a problem-space object z ∈ Z
with features x ∈ X , which we want to misclassify as a
target class t ∈ Y . Without loss of generality, we consider
a low-confidence attack, with desired attack confidence κ = 0
(see Equation 3). We assume by contradiction that there is
no solution to the feature-space attack; more formally, that
there is no solution δ∗ = arg minδ∈Rn:δ|=Ω ft(x + δ) that
satisfies ft(x+ δ∗) < 0. We now try to find a transformation
sequence T such that ft(ϕ(T(z))) < 0. Let us assume that
T∗ is a transformation sequence that corresponds to a suc-
cessful problem-space attack. By definition, T∗ is composed
by individual transformations: a first transformation T1, such
that ϕ(T1(z)) = x + δ1; a second transformation T2 such
that ϕ(T2(T1(z)) = x + δ1 + δ2; a k-th transformation
ϕ(Tk(· · ·T2(T1(z)))) = x+

∑
k δk. We recall that the feature-

space constraints are determined by the problem-space con-

straints, i.e., Γ ` Ω, and that, with slight abuse of notation, we
can write that Ω ⊆ Γ; this means that the search space allowed
by Γ is smaller or equal than that allowed by Ω. Let us now
replace

∑
k δk with δ†, which is a feature-space perturbation

corresponding to the problem-space transformation sequence
T, such that ft(x+δ†) < 0 (i.e., the sample is misclassified).
However, since the constraints imposed by Γ are stricter or
equal than those imposed by Ω, this means that δ† must be a
solution to arg minδ∈Ω ft(x + δ) such that ft(x + δ†) < 0.
However, this is impossible, because we hypothesized that
there was no solution for the feature-space attack under the
constraints Ω. Hence, having a solution in the feature-space
attack is a necessary condition for finding a solution for the
problem-space attack.

Proof of Theorem 2. The existence of a feature-space attack
(Equation 11) is the necessary condition, which has been
already proved for Theorem 1. Here, we need to prove that,
with Equation 12, the condition is sufficient for the attacker
to find a problem-space transformation that misclassifies the
object. Another way to write Equation 12 is to consider that the
attacker knows transformations that affect individual features
only (modifying more than one feature will result as a compo-
sition of such transformations). Formally, for any object z ∈ Z
with features ϕ(z) = x ∈ X , for any feature-space dimension
Xi of X , and for any value v ∈ domain(Xi), let us assume the
attacker knows a valid problem-space transformation sequence
T : T(z) |= Γ, ϕ(T(z)) = x′, such that:

x′i = xi + v, xi ∈ x, x′i ∈ x′ (13)
x′j = xj , ∀j 6= i, xj ∈ x, x′j ∈ x′ (14)

Intuitively, these two equations refer to the existence of a
problem-space transformation T that affects only one feature
Xi in X by any amount v ∈ domain(Xi). In this way, given
any adversarial feature-space perturbation δ∗, the attacker is
sure to find a transformation sequence that modifies each
individual feature step-by-step. In particular, let us consider
idx0, . . . , idxq−1 corresponding to the q > 0 values in δ∗ that
are different from 0 (i.e., values corresponding to an actual
feature-space perturbation). Then, a transformation sequence
T : T(z) |= Γ,T = Tidxq−1 ◦Tidxq−2 ◦ · · · ◦Tidx0 can always
be constructed by the attacker to satisfy ϕ(T(z)) = x+δ∗. We
highlight that we do not consider the existence of a specific
transformation in Z that maps to x + δ∗ because that may
not be known by the attacker; hence, the attacker may never
learn such a specific transformation. Thus, Equation 12 must
be valid for all possible perturbations within the considered
feature space.

D. Opaque Predicates Generation

We use opaque predicates [4] as inconspicuous conditional
statements always resolving to False to preserve dynamic
semantics of the Android applications.

To ensure the intractability of such an analysis, we follow
the work of Moser et al. [51] and build opaque predicates
using a formulation of the 3-SAT problem such that resolving
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the truth value of the predicate is equivalent to solving the
NP-complete 3-SAT problem.

The k-satisfiability (k-SAT) problem asks whether the vari-
ables of a Boolean logic formula can be consistently replaced
with True or False in such a way that the entire formula
evaluates to True; if so the formula is satisfiable. Such a
formula is easily expressed in its conjunctive normal form:∧m

i=1(Vi1 ∨ Vi2 ∨ ... ∨ Vik) ,

where Vij ∈ {v1, v2, ..., vn} are Boolean variables and k is
the number of variables per clause.

Importantly, when k = 3, formulas are only NP-Hard
in the worst case—30% of 3-SAT problems are in P [61].
This baseline guarantee is not sufficient as our injected code
should never execute. Additionally, we require a large number
of random predicates to reduce commonality between the
synthetic portions of our generated examples.

To consistently generate NP-Hard k-SAT problems we use
Random k-SAT [61] in which there are 3 parameters: the
number of variables n, the number of clauses m, and the
number of literals per clause k.

To construct a 3-SAT formula, m clauses of length 3 are
generated by randomly choosing a set of 3 variables from
the n available, and negating each with probability 50%. An
empirical study by Selman et al. [61] showed that n should
be at least 40 to ensure the formulas are hard to resolve.
Additionally, they show that formulas with too few clauses
are under-constrained while formulas with too many clauses
are over-constrained, both of which reduce the search time.
These experiments led to the following conjecture.

Threshold Conjecture [61]. Let us define c∗ as the
threshold at which 50% of the formulas are satisfiable. For
m/n < c∗, as n → ∞, the formula is satisfiable with
probability 100%, and for m/n > c∗, as n→∞, the formula
is unsatisfiable with probability 100%.

The current state-of-the-art for c∗ is 3.42 < c∗ ≈ 4.3 < 4.51
for 3-SAT [36, 50, 61]. We use this conjecture to ensure that
the formulas used for predicates are unsatisfiable with high
probability, i.e., that the predicate is likely a contradiction and
will always evalute to False.

Additionally we discard any generated formulas that fall into
two special cases of 3-SAT that are polynomially solvable:
• 2-SAT: The construction may be 2-SAT if it can be

expressed as a logically equivalent 2CNF formula [40].
• Horn-SAT: If at most one literal in a clause is positive,

it is a Horn clause. If all clauses are Horn clauses, the
formula is Horn-SAT and solvable in linear time [24].

We tested 100M Random 3-SAT trials using the fixed
clause-length model with parameters n ' 40,m ' 184, c∗ '
4.6. All (100%) of the generated constructions were unsatis-
fiable (and evaluated to False at runtime) which aligns with
the findings of Selman et al. [61]. This probability is sufficient
to prevent execution with near certainty.

To further reduce artifacts introduced by reusing the same
predicate, we use JSketch [35], a sketch-based program syn-
thesis tool, to randomly generate new predicates prior to

Listing 1. Simplified example of an opaque predicate generated by JSketch.
The opaque predicate wraps an adapted vein that calls a class containing
benign features. Note that while we render the equivalent Java here for
clarity, the actual transplantation occurs at a lower level of abstraction
(Dalvik bytecode). The Random k-SAT parameters shown are our ideal
parameters; in practice they are modulated around these values as part
of the JSketch synthesis in order to avoid them becoming fingerprintable
(e.g., having common length boolean arrays and loops between all predicates).

1vo id opaque ( ) {
2Random random = new Random ( ) ;
3t h i s ( ) ;
4b o o l e a n [ ] a r r a y O f B o o l e a n = new b o o l e a n [ 4 0 ] ;
5b y t e b1 ;
6f o r ( b1 = 0 ; b1 < a r r a y O f B o o l e a n . l e n g t h ; b1 ++)
7a r r a y O f B o o l e a n [ b1 ] = random . n e x t B o o l e a n ( ) ;
8b1 = 1 ;
9f o r ( b y t e b2 = 0 ; b2 < 184 .0D; b2 ++) {
10b o o l e a n boo l = f a l s e ;
11f o r ( b y t e b = 0 ; b < 3 ; b ++)
12boo l |= a r r a y O f B o o l e a n [ random . n e x t I n t (

a r r a y O f B o o l e a n . l e n g t h ) ] ;
13i f ( ! boo l )
14b1 = 0 ;
15}
16i f ( b1 != 0) {
17

18/ / Beg inn ing of a d a p t e d v e i n
19C o n t e x t c o n t e x t = ( ( C o n t e x t ) t h i s ) .

g e t A p p l i c a t i o n C o n t e x t ( ) ;
20I n t e n t i n t e n t = new I n t e n t ( ) ;
21t h i s ( t h i s , h . a ( t h i s , cxim . qngg . TEhr . sFiQa . c l a s s ) ) ;
22i n t e n t . p u t E x t r a ( ” l ” , h . p ( t h i s ) ) ;
23i n t e n t . a d d F l a g s (268435456) ;
24s t a r t A c t i v i t y ( i n t e n t ) ;
25h . x ( t h i s ) ;
26r e t u r n ;
27/ / End of a d a p t e d v e i n
28

29}
30}

injection with some variation while maintaining the required
properties. Post-transplantation, we verify for each adversarial
example that Soot’s program optimizations have not been able
to recognize and eliminate them. An example of a generated
opaque predicate (rendered in equivalent Java rather than
Dalvik bytecode) is shown in Listing 1.

E. DREBIN and Sec-SVM Implementation Details

We have access to a working Python implementation of
DREBIN based on sklearn, androguard, and aapt, and we
rely on LinearSVC classifier with C=1.

We now describe the details of our implementation of
the Sec-SVM approach [23]. To have have full control of
the training procedure, we approximate the linear SVM as
a single-layer neural network (NN) using PyTorch [53]. We
recall that the main intuition behind Sec-SVM is that classifier
weights are distributed more evenly in order to force an
attacker to modify more features to evade detection. Hence, we
modify the training procedure so that the Sec-SVM weights
are bounded by a maximum weight value k at each training
optimization step. Similarly to Demontis et al. [23], we
perform feature selection for computational efficiency, since
PyTorch does not support sparse vectors. We use an l2 (Ridge)
regularizer to select the top 10,000 with negligible reduction
in AUROC. This performance retention follows from recent
results that shows SVM tends to overemphasize a subset of
features [48]. To train the Sec-SVM, we perform an extensive

17



hyperparameter grid-search: with Adam and Stochastic Gra-
dient Descent (SGD) optimizers; training epochs of 5 to 100;
batch sizes from 20 to 212; learning rate from 100 to 10−5. We
identify the best single-layer NN configuration for our training
data to have the following parameters: Stochastic Gradient
Descent (SGD), batch size 1024, learning rate 10−4, and 75
training epochs. We then perform a grid-search of the Sec-
SVM hyperparameter k (i.e., the maximum weight absolute
value [23]) by clipping weights during training iterations. We
start from k = wmax, where wmax = maxi(wi) for all
features i; we then continue reducing k until we reach a weight
distribution similar to that reported in [23], while allowing a
maximum performance loss of 2% in AUROC. In this way,
we identify the best value for our setting as k = 0.2.

In §IV, Figure 2 reported the AUROC for the DREBIN
classifier [8] in SVM and Sec-SVM modes. The SVM mode
has been evaluated using the LinearSVC class of scikit-
learn [54] that utilizes the LIBLINEAR library [26]; as in the
DREBIN paper [8], we use hyperparameter C=1. The perfor-
mance degradation of the Sec-SVM compared to the baseline
SVM shown in Figure 2 is in part related to the defense itself
(as detailed in [23]), and in part due to minor convergence
issues (since our single-layer NN converges less effectively
than the LIBLINEAR implementation of scikit-learn). We have
verified with Demontis et al. [23] the correctness of our Sec-
SVM implementation and its performance, for the analysis
performed in this work.

F. Attack Algorithms

Algorithm 1 and Algorithm 2 describe in detail the two main
phases of our search strategy: organ harvesting and adversarial
program generation. For the sake of simplicity, we describe a
low-confidence attack, i.e., the attack is considered successful
as soon as the classification score is below zero. It is immediate
to consider high-confidence variations (as we evaluate in §IV).

Note that when using the minimal injection host zmin
to calculate the features that will be induced by a gadget,
features in the corresponding feature vector xmin should be
noted and dealt with accordingly (i.e., discounted). In our
case xmin contained the following three features:

{ "intents::android_intent_action_MAIN":1,
"intents::android_intent_category_LAUNCHER":1,
"activities::_MainActivity":1}

G. FlowDroid Errors

We performed extensive troubleshooting of FlowDroid [9]
to reduce the number of transplantation failures, and the
transplantations without FlowDroid errors in the different
configurations are as follows: 89.5% for SVM (L), 85% for
SVM (H), 80.4% for Sec-SVM (L), 73.3% for Sec-SVM
(H). These failures are only related to bugs and corner cases
of the research prototype of FlowDroid, and do not pose
any theoretical limitation on the attacks. Some examples
of the errors encountered include: inability to output large
APKs when the app’s SDK version is less than 21; a bug
triggered in AXmlWriter, the third party component used by

Algorithm 1: Initialization (Ice-Box Creation)
Input: Discriminant function h(x) = wTx+ b, which classifies x

as malware if h(x) > 0, otherwise as goodware. Minimal
app zmin ∈ Z with features ϕ(zmin) = xmin.

Parameters: Number of features to consider nf ; number of donors
per-feature nd.

Output: Ice-box of harvested organs with feature vectors.
1 ice-box ← {} . Empty key-value dictionary.
2 L← List of pairs (wi, i), sorted by increasing value of wi.
3 L′ ← First nf elements of L, then remove any entry with wi ≥ 0.
4 for (wi, i) in L′ do
5 ice-box[i] ← [] . Empty list for gadgets with feature i.
6 while length(ice-box[i])< nd do
7 zj ← Randomly sample a benign app with feature xi = 1.
8 Extract gadget ρj ∈ Z with feature xi = 1 from zj .
9 s← Software stats of ρj

10 z′ ← Inject gadget ρj in app zmin.
11 (xmin ∨ ei ∨ ηj)← ϕ(z′) . ei is a one-hot vector.
12 rj ← (ei ∨ ηj)← ϕ(z′) ∧ ¬xmin . Gadget features

obtained through set difference.
13 if h(rj) > 0 then
14 Discard the gadget;
15 else
16 Append (ρj , rj , s) to ice-box[i]. . Store gadget
17 return ice-box;

Algorithm 2: Attack (Adv. Program Generation)
Input: Discriminant function h(x) = wTx+ b, which classifies x

as malware if h(x) > 0, otherwise as goodware. Malware
app z ∈ Z . Ice-box G.

Parameters: Problem-space constraints.
Output: Adversarial app z′ ∈ Z such that h(ϕ(z′)) < 0.

1 T ← Transplantation through gadget addition.
2 Υ← Smoke test through app installation and execution in emulator.
3 Π← Plausibility by-design through code consolidation.
4 Λ← Artifacts from last column of Table I.
5 Γ← {T ,Υ,Π,Λ}
6 sz ← Software stats of z
7 x← ϕ(z)
8 L← [] . Empty list.
9 T(z)← Empty sequence of problem-space transformations.

10 for (ρj , rj , s) in G do
11 dj ← rj ∧ ¬x . Feature-space contribution of gadget j.
12 scorej ← h(dj) . Impact on decision score.
13 Append the pair (scorej , i, j) to L . Feature i, Gadget j.
14 L′ ← Sort L by increasing scorej . Negative scores first.
15 for (scorej , i, j) in L′ do
16 if z has xi = 1 then
17 Do nothing; . Feature i already present.
18 else if z has xi = 0 then
19 (ρj , rj , s)← element j in ice-box G
20 if check feasibility(sz , s) is True then
21 x← (x ∨ ei ∨ ηj) . Update features of z.
22 Append transplantation T ∈ T of gadget ρj in T(z).
23 if h(x) < 0 then
24 Exit from cycle; . Attack gadgets found.

25 z′ ← Apply transformation sequence T(z) . Inject chosen gadgets.
26 if h(ϕ(z′)) < 0 and T(z) |= Γ then
27 return z’; . Attack successful.
28 else
29 return Failure;

FlowDroid, when modifying app Manifests; and FlowDroid
injecting system libraries found on the classpath when they
should be excluded.
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