
INSOMNIA: Towards Concept-Drift Robustness in Network
Intrusion Detection

Giuseppina Andresini
University of Bari Aldo Moro

Feargus Pendlebury
University College London

Royal Holloway, University of London
ICSI

Fabio Pierazzi
King’s College London

Corrado Loglisci
University of Bari Aldo Moro

Annalisa Appice
University of Bari Aldo Moro

CINI - Consorzio Interuniversitario
Nazionale per l’Informatica

Lorenzo Cavallaro
University College London

ABSTRACT
Despite decades of research in network traffic analysis and incredi-
ble advances in artificial intelligence, network intrusion detection
systems based on machine learning (ML) have yet to prove their
worth. One core obstacle is the existence of concept drift, an issue
for all adversary-facing security systems. Additionally, specific chal-
lenges set intrusion detection apart from other ML-based security
tasks, such as malware detection.

In this work, we offer a new perspective on these challenges. We
propose INSOMNIA, a semi-supervised intrusion detector which
continuously updates the underlying ML model as network traffic
characteristics are affected by concept drift. We use active learning
to reduce latency in the model updates, label estimation to reduce
labeling overhead, and apply explainable AI to better interpret how
the model reacts to the shifting distribution.

To evaluate INSOMNIA, we extend TESSERACT—a framework
originally proposed for performing sound time-aware evaluations
of ML-based malware detectors—to the network intrusion domain.
Our evaluation shows that accounting for drifting scenarios is vital
for effective intrusion detection systems.

CCS CONCEPTS
• General and reference → Evaluation; • Security and pri-
vacy → Network security; • Computing methodologies →
Machine learning.

KEYWORDS
Network Security; Machine Learning

1 INTRODUCTION
In their landmark paper, Sommer and Paxson claimed that the rea-
son machine learning (ML) had not yet been applied to intrusion
detection—despite successes in other areas—was because “[...] the
intrusion detection domain exhibits particular characteristics that
make the effective deployment of machine learning approaches fun-
damentally harder than in many other contexts.” [62].

In the decade since, with the widespread popularity of deep
learning, the use of Deep Neural Networks (DNNs) has emerged
as a valuable candidate for designing network intrusion detection
systems (NIDS) [3–6, 18, 47, 60, 73]. However, despite a number of
successes, many challenges still remain, and as our understanding
of the area grows, yet more challenges arise beyond those originally

outlined in Sommer and Paxson [62]. In this work, we tackle a set
of open challenges which limit the practicality of current methods:
the non-uniform distribution of network traffic over time, the high
cost of labeling, latency during model updates, and the lack of
explainability (§2).

Core to all these challenges is the notion of concept drift [49].
Many previous methods typically follow the assumptions of tradi-
tional approaches: that the distribution of traffic data is stationary.
Due to this, features which appear stable in the training data may
appear adequate for describing future network flows. However, this
i.i.d. assumption is invalid in modern network traffic environments
where malicious activities are often polymorphic and continuously
evolving as attackers adapt to defenses [28]. Due to this, new attacks
or evasion strategies appear and it becomes difficult to distinguish
between malicious and benign behavior [12, 23, 36].

To illustrate this, we apply a baseline vanilla DNN (Appendix A)
and Kitsune [47], a state-of-the-art NIDS based on an ensemble
of autoencoders, to a recently revised version of the CICIDS2017
dataset [26]. These approaches assume data is i.i.d. and do not
include a mechanism to mitigate the impact of drift. The two ap-
proaches identify almost zero attacks across the 3 days of test data
(Table 1), clearly demonstrating that a modern NIDS must be proac-
tive in the face of concept drift and adapt to changes in the distribu-
tion of network traffic characteristics [42]. However, designing an
effective adaptation mechanism is nontrivial and requires innova-
tions to feature learning, inference, and the ongoing operational
deployment of the system.

We believe deep learning-based approaches are a promising
starting point for developing NIDS that are robust to drift, since
the nonlinear activation functions of DNNs may allow models to
maintain their accuracy under drifting conditions, as originally
evidenced by Pendlebury et al. [54]. Additionally, DNNs are respon-
sive to incremental learning, which allows them to adapt to the
new data distribution without the need to restart training from the
entirety of accumulated traces [19].

In this paper, we propose INSOMNIA: a framework that ad-
dresses challenges to network intrusion detection in the presence
of drift. INSOMNIA uses a DNN as its central underlying classifier
and, to reduce the impact of latency introduced by model updates,
we use active learning [56] to update using only new points that
would maximize information gain. To avoid the high overhead of
labeling with a human oracle, INSOMNIA is semi-supervised, using

https://orcid.org/0000-0002-5272-644X
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/0000-0002-3878-2680

a Nearest Centroid Neighbor classifier (NC) [20] to estimate labels
for the selected points (thus avoiding manual labeling in updates).

Finally, to understand how drift manifests in the dataset, we
use a permutation-based variable-importance measure [17, 27] to
provide global model explanations over time.

To evaluate INSOMNIA, we extend TESSERACT [54], a frame-
work originally proposed to remove experimental bias and perform
time-aware evaluations in the malware detection domain.

One key aspect of TESSERACT is that it ensures temporally
consistent dataset splits, with the training data preceding the test
data, and the test data partitioned into consecutive time periods
of equal size (e.g., one month). To capture the performance of a
classifier over time, it uses the Area Under Time (AUT) metric.

Applying TESSERACT to the network traffic domain is not im-
mediate. Firstly, the time granularity at which attacks occur in
networks is much smaller, possibly in the order of minutes or hours.
Secondly, the data is not uniform over time, e.g., there is typically
less activity at weekends or at night, and there may be quiet periods
where no attacks occur at all. Thirdly, operating in such short time-
frames has implications on retraining, both in terms of processing
time and also in terms of labeling capacity, which should be taken
into account during the evaluation.

In summary, this paper makes the following contributions:
• We outline a set of open challenges facing modern ML-based
intrusion detectors (§2) and propose INSOMNIA, a semi-
supervised approach that builds on active learning, label
estimation, and explainable AI in order to tackle them (§3).

• We extend TESSERACT [54] to the network intrusion do-
main and use it to evaluate INSOMNIA on a recently revised
version of the CICIDS2017 dataset [26]. Our results demon-
strate the need to proactively address changing distributions
in network traffic as INSOMNIA significantly outperforms
baselines that do not account for drift (§4).

Our study highlights current challenges and promising trends in
effectively addressing concept drift for network intrusion detection
with deep learning, while providing explanations that are funda-
mental for understanding findings and the behavior of models. To
foster future research, we release our code to the community (§7).

2 CHALLENGES AND MOTIVATION
We outline a number of remaining open challenges which limit the
practicality of existing solutions [e.g., 5, 47] in drifting settings.

Non-uniformity of data distribution over time. Crucially, NIDS
must handle the lack of uniformity in the distribution of malicious
traffic traces. Attacks of different types can start and stop abruptly
as different adversaries launch different engagements at different
phases of the attack lifecycle [43]. This means that not all categories
of malicious behavior are represented uniformly across the training
data which is problematic for models that update incrementally or
in an online fashion. Note that this is in contrast to malware detec-
tion where, although new attacks do appear over time, successful
families tend to be ubiquitous [64].

Additionally, concept drift can even affect traffic features which
are seemingly well-established. A common case is when benign
behavior, contrary to malicious behavior, exhibits a very gradual
drift as user habits change. In these cases it is not necessary to

relearn from the entirety of network traffic traces, but identifying
which characteristics change and then tuning the NIDS to traces
which exhibit such changes.

DNN models should accommodate the appearance of new cat-
egories of behavior without losing inference capability on older
categories. A possible solution is to train a base DNN model on
historical labeled data and then update it over time to fit unla-
beled incoming traces via transfer learning [55]. In the presence of
zero-day attacks, the past model may be structurally extended to
incorporate new model branches [55].

Cost of labeling. Very accurate intrusion detection models are
commonly trained using supervised learning by processing large
amounts of labeled traces [5, 41, 73]. However, manually labeling
network traffic is costly and, due to concept drift, models need to
be updated frequently with freshly labeled examples to maintain
continuously high accuracy over time.

Active learning query strategies [2] select a subset of new sam-
ples that, if manually labeled and incorporated into the training set,
would add the most information to the model, and are therefore the
most valuable samples to label. A common active learning query
strategy is uncertainty sampling [40] which selects the most “un-
certain” classifications (e.g., those closest to the decision boundary)
for manual labeling and retraining. The intuition is that these are
the most relevant for readjusting decision boundaries, which can
become blurred by drifting examples.

Pendlebury et al. [54] apply active learning with uncertainty
sampling to malware detection in which a human oracle is queried
each ‘month’ for manual labels with which the model is updated.
They follow estimates by Miller et al. [46] that an average company
could manually label 80 applications per day. In such a setting,
new malware variants take time to be developed and, for mobile
malware at least, there is a probation period where apps are vetted
before appearing in a marketplace. This means that the update
operation can be scheduled at longer intervals. However, for intru-
sion detection systems, network traffic is highly diverse and can
fluctuate suddenly, requiring faster response times which can put
strain on labeling capacity [22].

Additionally, network traffic traces may be acquired irregularly
over time which can compromise the effectiveness of scheduling
model updates at regular intervals. If very little traffic occurs, com-
putation is wasted by updating the model with scant new infor-
mation. If a large amount of traffic occurs, new attack categories
may be processed but not detected until they reappear in the next
interval. Such an occurrence can cause a sharp decrease in per-
formance. Alternatively, we propose using count-based windows
to update the model once a sufficient number of traces have been
acquired (see Figure 2).

Furthermore, to reduce the cost of using human oracles, manual
annotators may be replaced or supplemented with automated anno-
tation mechanisms that provide regular feedback at a very limited
cost [72], a strategy we explore in this work (§3).

Update latency. A further issue is the latency induced when up-
dating an intrusion detection model [44]. In principle, the new
model should be available in near-real time, i.e., before the subse-
quent traffic trace arrives for classification. In practice, the new

Inputs

Outputs

NC Label
Estimator

Initialization Phase Inference and Incremental Learning Phase

Xtr Ytr Xi Xi ̂Yi

̂Yi

Xus Xtr Ytr Xus ̂Yus

Xus ⊆ Xi
̂Yus

1 2 3 4 5

Train NC
Classifier

DNN
Prediction

Uncertainty
Sampling

NC
Prediction

NC DNN
Global

Explanations
Global

Explanations
NC DNN

Retrain NC
Classifier

DNN and XAI

Train DNN
Classifier

Apply
DALEX

Fine-tune
DNN

Apply
DALEX

Figure 1: A block diagram showing the different components and phases of the INSOMNIA framework: (1) models are trained
and initial explanations produced (2) the DNN provides predictions for incoming test objects (3) a subset of test objects are
selected for label estimation (4) the NC provides label estimates for this subset (5) models are updated with label estimates
and new explanations are produced. Phases (2)–(5) repeat during deployment.

model is only available after some delay, with the previous iteration
of the model being used on traces that appear in the meantime.

One solution to reducing the learning latency is the use of trans-
fer learning [51] in which a model trained to solve one task is
applied to another. In particular we can adopt fine-tuning, a simple
application of transfer learning in deep learning [65]. In fine-tuning,
a model is trained on data from the target distribution, but rather
than the weights being randomly initialized, they are pretrained on
data from a different—but related—distribution. In the NIDS context,
this allows the model to adapt to the drifting distribution without
retraining from scratch, which would incur significant overhead.

Explainability. Although deep learning techniques have been
widely used to obtain superhuman classification capabilities, the
trained models are in most cases black-box models [35].

Models used for intrusion detection are no different, and are
implicitly represented in numerical form as synaptic weights of the
network. It is generally difficult, if not impossible, to interpret these
weights without further tool support. However, the interpretability
of intrusion detection systems is of fundamental importance to
understanding the decision of themodel and informing downstream
actions on how to prevent evolving attacks.

Currently, themachine learning community is dedicating increas-
ing efforts towards developing eXplainable Artificial Intelligence
(XAI) techniques for interpreting deep learning models [69]. A re-
cent study byWarnecke et al. [68] applied explainability methods to
provide explanations for DNN decisions in malware detection and
vulnerability discovery. In this work we consider applying XAI to
NIDS in a temporal setting, to explain how the black box is changing
over time to fit to new attack categories.

3 METHODOLOGY
In this sectionwe present INSOMNIA (Incremental training iNtrusion
SystemOver tiMe-stampedNetwork traffIc dAta), a semi-supervised

methodology that combines incremental, active, and transfer learn-
ing to overcome the challenges described in §2. Additionally, it
applies XAI to provide post-hoc explanations of how the model
changes over time to fit the appearance of new attack categories in
the network traffic.

3.1 Overview
INSOMNIA initially learns an intrusion detection model from a col-
lection of labeled historical network traffic traces. It then continues
in an unsupervised manner, monitoring incoming unlabeled traces,
and adapting the model over time to fit the drifting conditions of the
network. The updates are facilitated by a learnt oracle mechanism
which produces class estimates (i.e., pseudo-labels) of new traces.
A block diagram of INSOMNIA is reported in Figure 1.

INSOMNIA assumes that only a limited quantity of labeled traces
are available initially (acquired during a data collection stage) with
an abundance of unlabeled traces later acquired over time (when
new network traffic traces arrive). Formally, the input is an ordered
multiset S of time-stamped network traffic traces,

S = P (𝒙𝑡 , 𝑦𝑡) : 𝑡 = 1, 2, . . . ,𝑚, . . . Q ,

where 𝒙𝑡 is a vector of flow-level traffic feature values and 𝑦𝑡 is
the corresponding binary label denoting a benign trace or an attack
trace. We assume that 𝑦𝑡 is known where 1 ≤ 𝑡 ≤ 𝑚, while 𝑦𝑡 is
unknown where 𝑡 > 𝑚.

INSOMNIA operates in three phases: an initialization phase, an
incremental learning phase, and an explanation phase.

In the initialization phase, the labeled traces are used to train the
intrusion detection model. Additionally, we train a distinct oracle
mechanism to estimate the true labels of the incoming examples.
This mechanism replaces the human oracle or external information
source commonly used in active learning [2, 7]. The two models are
distinct to ensure the predictive model is not affected by negative
feedback loops caused by training with its own predictions.

In the incremental learning phase, new unlabeled traces are
consumed consecutively and processed in batches of equal size. The
intrusion detection model and the label estimator are continuously
updated with the new traces which are unlabeled at inference time
and class-estimated before the model update.

After initialization and each incremental learning phase, an ex-
planation phase computes the global relevance of features to the
detection model’s decisions to monitor how the model has updated
to fit the drifting characteristics of the network traffic. In the fol-
lowing subsections we describe these three phases in more detail.

3.2 Initialization Phase
In this phase, we consider the initial 𝑚 labeled traces that form
the training set D ⊂ S. We process D to train both the intrusion
detection and oracle models. As an intrusion detection model, we
train a DNN model. As the label estimator, we train a Nearest
Centroid Neighbour classifier (NC) [66].

NC is an efficient classification algorithm that assigns a sample
to the same class as the training examples whose mean (centroid)
is closest to the new sample. We note that NC relies on a metric
learning strategy that takes advantage of the proximity between
samples to highlight hidden patterns useful for intrusion detection.
This learning strategy is in stark contrast to that of DNNs. The use
of NC for label estimation follows the cluster assumption of semi-
supervised learning, i.e., that points tend to form discrete clusters,
and that points in the same cluster are more likely to share a label
than those that are not [32].

The two diverse learners, DNN and NC, provide complementary
predictive capabilities and we hypothesize that the NC can act as
an independent oracle labeling mechanism to better label traces
the DNN predicts with uncertainty as a form of co-training [16].

In §4.3.3, we empirically verify the effectiveness of this hypothe-
sis.

3.3 Incremental Learning Phase
After initialisation, the DNN model classifies new unlabeled traces
as either benign or attack instances. As they are classified, new
traces are aggregated one-by-one into batches of size 𝑝 . Once a
batchX𝑖 is complete, the incremental learning operation is triggered
to update the DNN model. This operation consists of three steps:

(1) An uncertainty set 𝑋US is constructed by selecting the
traces of X𝑖 which are assigned the least certain predictions
by the DNN model;

(2) Next, the training set D is augmented with traces of 𝑋US
pseudo-labeled using the NC-based oracle;

(3) D is processed to update the DNN model, as well as the
NC-based oracle.

To construct 𝑋U𝑆 we adopt the uncertainty sampling (US) query
strategy [54] to select points with the least certain predictions for
which labeling will provide the most new information. Specifically,
we determine the uncertainty of DNN classifications by consider-
ing outputs of the DNN’s softmax layer. The lower the softmax
confidence value, the more uncertain the classification is. We select
the top 𝜎% most uncertain traces of X𝑖 to form 𝑋US . The trace
selection rate 𝜎 is a user-defined parameter.

Next, traces in𝑋US are labeled with the current NC-based oracle
and added to D, which is used to update both the DNN model and
the NC-based oracle. The DNN model is updated with the fine-
tuning operation that adapts the weights of the previously trained
DNN model to the potentially drifting distribution of D.

The class centroids of the NC-based oracle are recomputed on
D. This is a form of self-learning [74], in which a classification
algorithm learns from a labeled dataset that is augmented with
new examples labeled by the classifier itself. By retaining the initial
training examples that have ground truth labels, we mitigate the po-
tential catastrophic effects introduced by low quality pseudo-labels.
This also ensures new traces are not inordinately more relevant
than older traces, to avoid unlearning previous attack behavior.

Note that the update operation introduces a learning latency
until the new DNN is ready. Therefore, in the interim, the old DNN
model (i.e., the model being updated) must be used to classify the
incoming traces, which may induce a temporary performance decay
relative to the amount of drift.

3.4 Explanations Phase
INSOMNIA relies on XAI to provide post-hoc explanations of how
the DNN model adjusts over time to fit the appearance of new
attack categories in the network traffic.

We use the moDel Agnostic Language for Exploration and eXpla-
nation (DALEX) [11, 15], a framework that implements techniques
for understanding both the global and local structure of predictive
black-box models. In INSOMNIA, we integrate the global explana-
tion methodology, which allows us to explain the behavior of the
DNN by measuring the global relevance of different features (i.e.,
observed traffic characteristics).

DALEX uses a permutation-based variable-importance measure
to quantify the relevance of each feature [17, 27]. For each feature,
its effect is removed by resampling or permuting the values of the
feature and a loss function compares the performance before and
after. Intuitively, if a feature is important, randomly permuting its
values will cause the loss to increase.

By inspecting how the feature importance changes over time,
we can identify those that remain relevant, as well as those that are
redundant. Importantly, by analyzing what features increase in rele-
vance as new attack categories appear, we can identify the features
that contribute the most to the characterization (and detection) of
each attack category.

4 EVALUATION
In this section we perform a time-aware evaluation of the detection
and explaination capabilities of INSOMNIA1 on CICIDS2017, a
recently revised network intrusion dataset [26, 58]. To this end,
we extend the TESSERACT [54] framework to support time-aware
evaluation of network intrusion detection tasks. In particular, we
add functionality to temporally partition data using count-based
windows rather than time splits used in the original work, as well
as to compute the impact of latency during model updates.

1See Appendix A for DNN architecture, implementation, and hyperparameter tuning.

1 12 24 36 48 60 72 84 96 108 120
Hour

25K

50K

75K

100K

125K

Nu
m

be
r o

f F
lo

ws

(a) Number of flows per hour

1 4 7 10 13 16 19 22 25 28
Window

0

200

400

600

800

1000

Ti
m

e
(m

in
)

61.2

Median

(b) Window length in minutes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

BENIGN

FTP-Patator

SSH-Patator

DoS GoldenEye

DoS Hulk

DoS Slowhttptest

DoS Slowloris

Heartbleed

Brute Force

Sql Injection

XSS

Infiltration

Bot

Port Scan

DDoS

68
6,6

97

48
,30

3
38

,95
6

2,6
94

3,5
84

4,4
26

30
,25

8
50

,00
0

50
,00

0
49

,98
9

50
,00

0
49

,83
4

49
,97

6
50

,00
0

49
,98

5
49

,99
1

49
,99

3
49

,99
9

49
,96

2
49

,30
1

49
,99

4
49

,65
5

12
,48

8
1,7

53
1,4

99
25

,58
7

21
,37

5
5,6

00
25

,17
0

3,9
73 0

2,9
80 0

0 0 0 0 0 0 7,5
67 0

0 0 6,9
98

47
,30

6
46

,41
6

45
,57

4
12

,17
5

0 0

0 0 1,7
42 0

0 1,6
97

2,3
04 0

0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 15
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 15 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 9 7 1 0 0 0 0 6 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 38 69
9 1 0 0 0 0 0 0 0 0

0 5 34
5

37
,51

2
48

,24
7

48
,50

1
24

,41
3

0 0 0

0 0
28

,26
5

44
,40

0
22

,09
8

0

1

10

10
0

1K

10
K

10
0K

1M

(c) Category distribution

Figure 2: CICIDS2017 overview. Figure 2a shows the number of traffic traces per hour. Figure 2b shows the total time spanned
by count-based windows (in minutes) for the incremental phase. Figure 2c shows the overall distribution of traces per attack
category. The initialization phase covers days 1 and 2 for a total of𝑚 = 693, 650 labeled traces (block labeled 0). The incremental
phase covers days 1, 2, and 3 spanning consecutive windows of 𝑝 = 50, 000 traces (blocks 1-28).

4.1 CICIDS2017 Network Traffic Data
The CICIDS2017 dataset [58] from the Canadian Institute for Cy-
bersecurity provides data collection of a complete network testbed
of different devices and operating systems, in which separate victim
and attacker networks communicate over the Internet. Communica-
tion covers common network protocols, including HTTP, HTTPS,
FTP, SSH, and SMTP. Profiling agents, trained beforehand on net-
work events generated through genuine human interactions on the
network, were used to generate realistic benign traffic, while attacks
were identified according to a 2016 McAfee report [45]. Attacks
include brute force attacks, Heartbleed, botnet communication, sev-
eral variants of DoS and DDoS, infiltration, and web-related threats.
In total, the dataset contains 51.1 GB of PCAPs spanning 5 days.
The data comprises 2.8 million time-stamped traffic traces that are
divided into 15 attack categories. Individual traces are represented
by a feature vector of 79 high-level statistical characteristics, manu-
ally engineered by intrusion detection experts and extracted using
the tool CICFlowMeter [24, 39].

In this work, we use a refined version of CICIDS2017 recently
released by Engelen et al. [26]. This version addresses flaws in the
original dataset related to traffic generation, flow construction, fea-
ture extraction, and labeling that severely undermine its correctness,
validity, and overall utility. The new version removes meaningless
artefacts, dataset errors, and mislabeled traces, retaining 2,524,767
timestamped traces between 00:01 July 3rd, 2017, and 22:02 July
7th, 2017, and 72 features. As expected in real deployments, the
benign class is the majority class with 2,090,918 traces (82%) labeled
as benign and 433,849 traces (18%) as attacks. However, we remark
that attacks will be even less prevalent in the wild, so it is necessary
to take into account the base-rate fallacy [10] when interpreting
the results. Figure 2a shows the rate of traces per hour illustrating
daily peak traffic between 12:00 and 22:00.

4.2 Experimental Setup
We consider the first two days of the dataset as the labeled training
set processed during the initialization phase of INSOMNIA (§3.2).
The remaining three days are used as the test data, processed as
unlabeled traces during the incremental learning phase (§3.3).

Figure 2b shows the length of each count-based window in min-
utes, with a median length of 61.2 minutes. The two large peaks
correspond to windows 10 and 18 which aggregate largely night-
time benign traffic—as there is less activity, more time passes before
the windows are filled.

The window size 𝑝 = |X𝑖 | is set to 50,000, while the initial
training set size𝑚 = |D| is set to 693,650 to cover all traces in days
1 and 2. Figure 2c visualizes the distribution of traces across the 15
attack categories. We note that unseen attacks, appearing over time
and causing concept drift, are those handled during the incremental
learning phase (window 1 onwards). For the uncertainty sampling,
we investigate the effects of varying the trace selection rate 𝜎 , with
values of 20%, 50%, and 70%.

We evaluate the detection performance of the DNN model in
terms of average 𝐹1 and AUT(𝐹1).2 𝐹1 is the harmonic mean of
precision and recall, where precision (𝑇𝑃/(𝑇𝑃+𝐹𝑃)) measures the
proportion of correct positive predictions and recall (𝑇𝑃/(𝑇𝑃+𝐹𝑁))
measures the model’s ability to detect all attacks. AUT(𝐹1) is the
area under the curve of 𝐹1 computed over time [54] and is a time-
aware metric specifically designed to capture the time decay of a
security classifier.

We consider two scenarios; an ideal scenario where there is no
learning latency during the incremental updates, and a more re-
alistic scenario where this latency is taken into account. 𝐹1 and

2More precisely, we use AUT(𝐹1 , 28𝑏50𝑘), where 𝑏50𝑘 denotes count-based blocks of
50,000 samples—in contrast to the original time-based notation where 12𝑚 would
denote a year of month-sized periods, for example. For brevity we use the shorthand
AUT(𝐹1) throughout.

Table 1: Performance and total TIME of No-Update, Kitsune [47], US+Oracle, and INSOMNIA (with NC) for different 𝜎 at 20%,
50%, and 70%.

Selected Method 𝐹1 (%) AUT(𝐹1) 𝐹1-D(%) AUT(𝐹1)-D TIME (min)

– No-Update 0.0019 0.035 0.0019 0.035 –
Kitsune [47] 0.0113 0.009 0.0113 0.009 –

20% US+Oracle 74.57 32.73 74.40 32.61 445.24
INSOMNIA 69.83 41.64 69.82 41.56 262.25

50% US+Oracle 81.62 36.10 81.46 35.99 517.92
INSOMNIA 80.88 42.39 80.40 42.17 428.39

70% US+Oracle 90.85 44.99 90.74 44.68 587.96
INSOMNIA 64.90 29.10 64.90 29.09 502.41

1 4 7 10 13 16 19 22 25 28
Window

0

20

40

60

80

100

F1
 (%

)

20%
50%
70%

Figure 3: 𝐹1 (%) of INSOMNIA computed on all traces across
the consecutive windows at varying 𝜎 of 20%, 50%, and 70%.
The grey spans correspond to windows in which no attacks
occurred and for which 𝐹1 is undefined.

AUT(𝐹1) are measured assuming the ideal scenario, without learn-
ing latency, where the DNN is fine-tuned at the end ofX𝑖 to classify
all traces inX𝑖+1. In the realistic scenario, new incoming traces from
the subsequent window X𝑖+1 will already have been encountered
before the fine-tuning procedure of the DNN model has completed
for window X𝑖 . To account for this delay, we present results for 𝐹1
and AUT(𝐹1) where the previous model is used up until the new
model is ready, denoted as 𝐹1-D and AUT(𝐹1)-D respectively.

Finally, we evaluate the efficiency of INSOMNIA by measuring
the runtime taken to process all windows X𝑖 (denoted as TIME).
All experiments were executed on a Linux machine equipped with
an Intel(R) Core(TM) i7-9700F CPU @ 3.00GHz and memory RAM
of 32GB using a single GeForce RTX 2080.

4.3 Results
We report results considering several axes of performance: correct-
ness of the predictions, quality of the uncertainty sampling strategy,
accuracy of the label estimator, and utility of the explanations.

4.3.1 INSOMNIA Performance. Table 1 displays the results of our
experiments comparing INSOMNIA against baselines with either
no update, or a perfect update (using ground truth labels). For
the uncertainty sampling query strategy, we compare results for
different values of selection rate 𝜎 : 20%, 50%, and 70%. These results
lead to several conclusions detailed below.

Comparison to baselines. We first compare INSOMNIA against
three baselines: Kitsune [47], and two variants of INSOMNIA: No-
Update and US+Oracle. No-Update does not implement any incre-
mental learning phase, instead it reuses the model learned during
the initialization phase to classify all subsequent traces. US+Oracle
implements the incremental learning phase using the uncertainty
sampling strategy, but relies on a human oracle to produce ground
truth labels in place of the NC-based oracle. This represents an
ideal upper bound on performance.

No-Update and Kitsune [47] both suffer from extreme perfor-
mance decay, completely failing to recognise attacks that arise over
time and were not encountered during initialization. While we
note that Kitsune was not designed to withstand concept drift (and
rather focuses on orthogonal research problems such as constrained
resources), these results give empirical support to the idea that adap-
tation strategies such as incremental learning are important for
addressing concept drift in network intrusion data.

As expected, INSOMNIA does not outperformUS+Oracle, which
uses ground truth labels rather than class estimates. However, the
experimental configuration with 𝜎 = 50% has average 𝐹1 very close
to US+Oracle and even outperforms it in terms of the temporal
AUT(𝐹1) metric. Significantly, the performance of INSOMNIA is
much closer to that of US+Oracle than No-Update. This demon-
strates that active learning with pseudo-labels can closely approx-
imate performance with ground truth labels in scenarios where
labeling capacity is limited.

Impact of selection rate. Next we analyze the effect of the selec-
tion rate 𝜎 on the performance of INSOMNIA. The highest 𝐹1 is
achieved with 𝜎 = 50%, followed by 20%, while 𝜎 = 70% produces
the lowest performance.

This performance comparison is further depicted in Figure 3
which shows 𝐹1-D of INSOMNIA over consecutive windows for the
three different 𝜎 . Notably, 𝜎 = 70% performs significantly worse for
windows 22–25. To explore the cause of this behavior, we analyze
the accuracy of the pseudo-labels generated by the NC-based oracle.
Figures 4a and 4b compare the overall accuracy (OA) and 𝐹1 of
the label estimates computed for the 20%, 50%, and 70% selected
uncertain traces. From this we observe that the low 𝐹1 of the label
estimator duringwindows 21–24 correlates to the poor performance
of the DNN during the same timeframe, where 𝜎 = 70%.

1 4 7 10 13 16 19 22 25 28
Window

0

20

40

60

80

100
OA

 (%
)

(a) Overall accuracy of NC for selected points

1 4 7 10 13 16 19 22 25 28
Window

0

20

40

60

80

100

F1
 (%

)

20%
50%
70%

(b) 𝐹1 of NC for selected points

Figure 4: OA(%) and 𝐹1 (%) of NC label estimations computed over the consecutive windows generated for the uncertain traces
selected with the US strategy. Metrics are collected by varying 𝜎 among 20%, 50% and, 70%. The grey spans correspond to
windows in which no attack traces where selected by the strategy and for which 𝐹1 is undefined.

While the low 𝐹1 score of the label estimator in the preceding
periods seems to have little detrimental effect on the performance,
this is likely due to the extremely low prevalence of attacks during
these windows compared to the large influx of port scanning traffic
received in window 22. We reason that port scans may be naturally
harder to distinguish from benign traffic, but that the large volume
of port scans exacerbates the self-poisoning effect. Further analysis
of the label estimator accuracy is included in §4.3.3.

Learning latency and runtime. We note a slight decrease in
performance across all configurations when the learning latency
is taken into account (e.g., 𝐹1-D vs. 𝐹1). This highlights how the
update mechanism of INSOMNIA is sufficiently quick to avoid long
latency periods, and that the system is robust to the onset of these
periods when they do occur. We can conclude that latency does not
threaten the ideal performance of INSOMNIA.

Similarly when considering runtime, we see that the total time
taken to complete updates (TIME) positively correlates with the
higher 𝜎 , increasing the risk of latency periods. This behavior
is observed equally in the ideal scenario using a human oracle
(US+Oracle) as with our NC-based estimator. However we note
that our runtime calculations also assume that human-derived la-
bels are available as soon as the model needs them; realistically,
manually analyzing attack traffic can be very time intensive, which
would further increase the latency of US+Oracle.

Figure 5 depicts the time spent per window on completing the
incremental learning operation for different values of 𝜎 . Windows
marked with a red cross depict latency periods for which the model
for that window is fine-tuned only after all traces from that window
have already been classified (i.e., the new model is ‘too late’). As
expected, the total time and number of such periods increases with
𝜎 . On the other hand, as illustrated earlier, this does not necessarily
suggest a trade-off between performance and latencywith respect to
the selection rate: high values of 𝜎 may cause catastrophic feedback
loops due to the addition of low quality pseudo-labels.

4.3.2 US Strategy Performance. We also perform an ablation study
to inspect the effectiveness of the US strategy. We compare the
accuracy of INSOMNIA to that of a variant (RS+NC) for which the
query strategy has been replaced with the Random Sampling (RS)

strategy [57]. The RS strategy randomly chooses traces to query
with the NC-based oracle. We perform the comparison at 𝜎 = 50%.

The results depicted in Figure 6 show that the performance of
INSOMNIA with US is superior to the RS strategy, independent of
the metric considered. This suggests that selecting traces with the
most uncertain predictions does indeed result in a more efficient
update that increases the information gained by the model.

4.3.3 Oracle Performance. We also analyse how well the NC clas-
sifier supports the DNN as an oracle. To this end, we compare the
OA and 𝐹1 per window on the traces selected with the US strategy
at 𝜎 = 50% as classified by the DNN model versus the NC classifier.

Figure 7 shows the NC-based oracle can effectively improve the
accuracy of the most uncertain classifications yielded by the DNN
model (e.g., in windows 6–14 and 22–24). This shows that combin-
ing two learners with differing underlying concepts helps support
high-quality pseudo-labels which can preserve the robustness of
the DNN model over time. This avoids potential negative feedback
loops, which could cause self-poisoning if the DNN updated itself
using its own predictions. We emphasize that the relationship be-
tween the NC and the DNN are symbiotic—the NC relies on the
DNN to provide the most uncertain predictions and the NC sup-
plies estimates for corrected labels. The NC would not be able to
operate independently in the same context unless it was supported
by a human oracle to provide it with labels (or an alternative label
estimator) to mitigate uncertain predictions.

4.3.4 Drift Explanation. Finally, we focus on explaining how the
DNN model changes over time as new attack categories appear. For
this analysis, we consider the DNN model learned with INSOMNIA
at 𝜎 = 50% and we use DALEX to measure the global relevance of
features based on the predictive capability of the DNN for each
window. A significant change in the relevance of one or more
features illustrates the DNN adapting to concept drift.

The heatmap in Figure 8 depicts the ranked feature relevance
for the top ten most relevant features per window.

We note that the features Idle Max and Protocol are consistently
ranked in the top ten positions (darkest cells) over time, while
others gain relevance only with the appearance of different attack
categories (cf. Figure 2c). Next we examine in depth how feature

1 4 7 10 13 16 19 22 25 28
Window

0

10

20

30

40

50

Ti
m

e
(m

in
)

(a) 𝜎 = 20%

1 4 7 10 13 16 19 22 25 28
Window

(b) 𝜎 = 50%

1 4 7 10 13 16 19 22 25 28
Window

0

10

20

30

40

50

(c) 𝜎 = 70%

Figure 5: Computation time (in minutes) spent completing the incremental learning phase of INSOMNIA for varying 𝜎 at 20%,
50%, and 70%. Crosses (×) indicate latency periods for which the fine-tuning of the DNN model completes after all traces in
the current window have been acquired.

F1 AUT(F1) F1-D AUT(F1)-D0

20

40

60

80

Pe
rfo

rm
an

ce
 (%

)

80.88

42.39

80.40

42.17

63.62

27.28

63.61

27.22

INSOMNIA
RS+NC

Figure 6: 𝐹1 (%), AUT(𝐹1), 𝐹1-D(%) and AUT(𝐹1)-D measured
per window with both INSOMNIA and RS+NC with 50% of
traces selected with the US strategy and the RS strategy, re-
spectively.

relevance changes for two sequence of windows: windows 0–2 and
windows 22–23.

Windows 0–2. As shown in Figure 2c, the model is initially trained
on window 0 which contains only benign traces and attacks by
password bruteforcers: FTP–Patator and SSH-Patator . Both FTP-
Patator and SSH-Patator attacks disappear in subsequent windows,
while denial-of-service (DoS) attacks appear with DoS Slowloris in
windows 1 and 2, and DoS Slowhttptest in window 2.

Figures 9a–9c show the top ten globally relevant values identified
with DALEX for the DNN initialized on window 0, fine-tuned on
window 1, and fine-tuned on window 2, respectively. We note that
there is a significant change in the relevance of several features
from window 0 to window 1 as INSOMNIA updates the DNNmodel
to detect the new DoS Slowloris traces.

Slowloris is a DoS attack that relies on creating several partial
HTTP requests, keeping such connections open for as long as pos-
sible. Among relevant network features, one would then expect to
observe the "maximum time a flowwas idle before becoming active"
(Idle Max)3 to gain importance, as Figures 9a–9c depict. A similar
reasoning can be applied to the other three new traffic features
(Protocol, Destination Port, and Bwd IAT Std) that gain relevance

3A comprehensive mapping of feature names to their corresponding description is
available at https://github.com/ahlashkari/CICFlowMeter/blob/master/ReadMe.txt.

for recognizing these attack traces. Bwd IAT Total, which was al-
ready identified as relevant in recognizing the bruteforce attacks,
increases in relevance too. Similarly, some features become less
relevant (i.e., Idle Std, Bwd IAT Min, Bwd IAT Mean, and Fwd IAT
Total) while others drop from the top features entirely (i.e., Fwd IAT
Min and Init Win bytes backward).

Three new features (Min Packet Length, Flow IAT Min, and Packet
Length Variance) become relevant in window 2 as the model adapts
to the change in DoS strategy (from Slowloris to Slowhttptest). The
top-four features (Idle Max, Idle Std, Protocol, and Bwd IAT Min) do
not change their relevance, two of which (𝐼𝑑𝑙𝑒 𝑀𝑎𝑥 and 𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙)
became more relevant in window 1. This suggests these features
help the model stay stable in recognizing the DoS Slowloris attack
as it persists into window 2.

Windows 22-23. Figure 2c shows port scanning activity (Port
Scan) appearing in a small number of traces at windows 20 and 21
(5 and 345, respectively), then significantly increasing in volume
during windows 22 and 23 (37,512 and 48,501, respectively).

Figures 9d-9f show the top ten globally relevant values identified
with DALEX for the DNN fine-tuned on windows 22, 23, and 24. We
note that the feature Bwd Packet Length Min, which gains relevance
in window 22 (as the port scanning activity increases), retains
its relevance on windows 23 and 24, as port scanning activity is
sustained. A similar trend is observed for Idle Mean that becomes
relevant in window 22 and maintains its relevance throughout
windows 23 and 24.

5 LIMITATIONS AND FUTUREWORK
The results of our evaluation highlight yet another important open
problem for NIDS: detection of stealthy, low-prevalence attacks.
INSOMNIA struggles to detect the few instances of the Infiltration
attack at windows 14–17 and we observe that maintaining sensi-
tivity to attacks with a very low base rate in the presence of high
volume attacks such as DoS is very challenging—as is generalizing
to attack categories of greatly different character. While general-
izing across attack types remains a holy grail, future work may
consider ensembles that tackle different attack types with separate
models. Additionally, INSOMNIA’s update mechanism does not
have the opportunity to make use of knowledge learned from at-
tacks which occur wholly in a single window (e.g., Brute Force at

https://github.com/ahlashkari/CICFlowMeter/blob/master/ReadMe.txt

1 4 7 10 13 16 19 22 25 28
Window

0

20

40

60

80

100
OA

(%
)

DNN
NC

(a) Overall accuracy for selected points (𝜎 = 50%)

1 4 7 10 13 16 19 22 25 28
Window

0

20

40

60

80

100

F1
(%

)

(b) 𝐹1 for selected points (𝜎 = 50%)

Figure 7: OA(%) and 𝐹1 (%) of the NC-based oracle versus the DNNmodel. Metrics are computed on the 50% of traces selected per
window with the US strategy. The grey spans correspond to windows in which no attack traces where selected by the strategy
and for which 𝐹1 is undefined.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

 Idle Max
Protocol
 Idle Std

 Bwd IAT Mean
 Packet Length Variance

 Min Packet Length
 Bwd IAT Min

 Flow IAT Mean
 Flow IAT Max
 Fwd IAT Min

 Bwd IAT Max
Fwd IAT Total
 Bwd IAT Std

Bwd IAT Total
Flow Duration

Idle Mean
 Subflow Bwd Bytes

 Flow IAT Min
 Bwd Packet Length Min

 Average Packet Size
 Avg Bwd Segment Size

 Destination Port
 Init_Win_bytes_backward

1 2 1 2 1
3 2 3 4 3 2 1 2 1 2

1 2 3 2 8 6 7 6 7 5 8 6 7 6 4 5 4 3 4 6 3
3 6 5 6 4 6 5 6 8 7 5 4 5 4 6 5 6 9 7 9 7 8

10 5 2 3 5 3 4
8 4 6 4 3 4 5 4 9 10 10 5 6 5 7

2 4 7 5 7 6 8 4 6 8 6 10 8 7 9 9
8 8 9 7 10 7 8 10 9 8 7 9 6 9 10 7 10 10 11

10 8 10 9 7 5 7 9 5 7 8 11
4 10 8 6 9 8 9 7 10 9 10 5

9 8 10 10 9 10 11
7 9 7 9 9 11

10 10 11
9 7 11

5 6 9 8 10 11
9 8 9 8 7 10

8 9 11
9 9 11

6 8 6 5 4 5 4 6
5 6 5 7 8 7 11

10 11
8 11

10 11

1

2

3

4

5

6

7

8

9

10

11+

Figure 8: Feature ranking map of the DNN model learned
with INSOMNIA at 𝜎 = 50%. We plot the rank (1–10) of the
features (axis Y), which are ranked in the top ten positions of
the feature ranking determined with DALEX along the con-
secutive windows (axis X) processed over time. Window 0
covers the traces processed in initialization phase.Windows
1–28 cover the traces processed in the incremental phase.

window 11). Reducing the window size may help with this, however
it would also reduce the statistical support available each update.
While conceivably the DNN would be susceptible to catastrophic
forgetting [31] over long deployments, we already operate under
the assumption that the long-term accuracy of ground truth labels
is unreliable due to drift. Additionally, our NC aims to correct DNN
errors should forgetting occur.

As future work, we plan to explore how DALEX’s explanations
may be used for feature selection, to identify more stable features
and improve the accuracy and robustness of themodel. Additionally,
we plan to investigate the effectiveness of intentional forgetting
mechanisms, in order to maintain the freshness of the training set
as older data begins to age. Finally, we intend to explore the use of
online classification algorithms in the role of the oracle.

6 RELATEDWORK

Network Intrusion Detection. In their seminal paper, Sommer
and Paxson [62] reason about the intrinsic challenges of using
machine learning to detect network attacks. After many years of
successful ML-based approaches for detection of large-scale attacks
such as worms [e.g., 67] and botnets [e.g., 33, 34], network attack
detection research has struggled to make major breakthroughs
in the past 10 years. INSOMNIA aims to reopen discussions on
how machine learning can be adapted to overcome the specific
challenges of the network intrusion domain (§2).

Learning with Drift. One of the major challenges of the network
domain in the enterprise setting is extreme non-stationarity [8].
TESSERACT [54] quantifies severe concept drift in the malware
domain, which causes rapid performance decay of ML-based de-
tectors due to violations of the i.i.d. assumption. CADE [71] is a
point-based outlier detector for drifting points, and has shown its
effectiveness on three types of network attacks.

The main objective of our work, INSOMNIA, is to mitigate con-
cept drift in network scenarios through incremental learning and
label estimation. The temporal dimension is intrinsic in incremental
learning and several works have been designed to exploit time-
aware techniques. For instance, Mohamed et al. [48] propose a
traffic anomaly detector relying on incremental learning that does
not require model redeployment, but—unlike INSOMNIA—it re-
quires partial ground truth labels for retraining over time.

Learning with Limited Labels. Given the difficulty in obtaining
timely accurate labels for network traffic traces, semi-supervised
and unsupervised learning methods are the most suitable solutions
for deep learning-based intrusion detection systems. In the con-
text of network intrusion detection, Taheri et al. [63] develop an
unsupervised algorithm for outlier detection using incremental
clustering. However, it focuses on point-based anomaly detection,
whereas INSOMNIA aims to adapt to the distribution shift over
time. Noorbehbahani et al. [50] propose a semi-supervised approach
combining offline and online learning, while requiring some labels
continuously over time. To limit the amount of labels required, ac-
tive learning solutions are traditionally considered [57]. They rely

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Relevance

 Init_Win_bytes_backward
 Bwd IAT Total

 Flow IAT Mean
 Fwd IAT Total

 Bwd Packet Length Min
 Flow Duration
 Fwd IAT Min

 Bwd IAT Mean
 Bwd IAT Min

 Idle Std

(a) Window 0

0.00 0.02 0.04 0.06 0.08 0.10
Relevance

 Bwd IAT Std
 Fwd IAT Total

 Destination Port
 Bwd IAT Total

 Bwd IAT Mean
 Flow Duration
 Bwd IAT Min

 Protocol
 Idle Std

 Idle Max

(b) Window 1

0.00 0.05 0.10 0.15 0.20
Relevance

 Packet Length Variance
 Flow IAT Min

 Min Packet Length
 Fwd IAT Total

 Flow Duration
 Bwd IAT Mean
 Bwd IAT Min

 Protocol
 Idle Std

 Idle Max

(c) Window 2

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Relevance

 Flow IAT Mean
 Idle Mean

 Bwd Packet Length Min
 Fwd IAT Min

 Bwd IAT Mean
 Min Packet Length

 Idle Std
 Packet Length Variance

 Protocol
 Idle Max

(d) Window 22

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Relevance

 Flow IAT Mean
 Bwd IAT Mean

 Idle Mean
 Average Packet Size

 Bwd Packet Length Min
 Min Packet Length

 Idle Std
 Packet Length Variance

 Protocol
 Idle Max

(e) Window 23

0.00 0.05 0.10 0.15 0.20
Relevance

 Fwd IAT Min
 Idle Mean

 Average Packet Size
 Bwd IAT Mean

 Min Packet Length
 Bwd Packet Length Min

 Idle Std
 Packet Length Variance

 Protocol
 Idle Max

(f) Window 24

Figure 9: Top ten most-relevant features identified using the permutation-based variable-importance measure of DALEX [11]
for windows 0, 1, 2 (top row), 22, 23, and 24 (bottom row). Arrows (↑↓) indicate features which changed in rank with respect to
the previous window, while stars (★) indicate features which have newly entered the top ten. Dots (·) indicate no change.

on a subset of ground truth labels to retrain at each time step. In con-
trast to these previously mentioned approaches, INSOMNIA only
requires labels at the initial training time, and then sustains itself
without requiring manual labeling; instead, it generates pseudo-
labels based on the nearest centroid neighbor. Updating with the
model’s predicted labels has been proposed as a solution in the mal-
ware domain [70], but has been shown to lead to self-poisoning [37];
this risk is mitigated in INSOMNIA’s use of cotraining by using
two distinct algorithms for label estimation and prediction.

Deep Learning for Intrusion Detection. A number of host-
based intrusion detectors have been proposed using deep learning,
e.g., DeepLog [25], Tiresias [59], and Shu et al. [61]. These defenses
are complementary to network-based defenses and drift in their
system-level event features is an orthogonal research problem.

The closest approach related to our work is Kitsune [47], a fully
unsupervised network anomaly detector that leverages an ensemble
of auto-encoders trained on benign data, with high reconstruction
errors signaling attacks. However, we demonstrate that Kitsune’s
effectiveness diminishes drastically when faced with concept drift
(Table 1). This is potentially due to Kitsune being evaluated on IoT
data which exhibited higher stationarity than typical enterprise
network environments [9].

7 AVAILABILITY
We release INSOMNIA and the extensions to TESSERACT [54] at
http://www.di.uniba.it/~andresini/insomnia.html.

8 CONCLUSION
We outline a set of open challenges facing modern ML-based intru-
sion detectors relating to a lack of uniformity in the distribution
of traffic data over time. To tackle them, we propose INSOMNIA,
a semi-supervised approach that uses active learning to reduce

latency in the model updates, label estimation to reduce labeling
overhead, and applies explainable AI to describe how the model
evolves to fit the shifting distribution. We extend the TESSERACT
framework [54] to perform a time-aware evaluation of INSOM-
NIA on a recently published, revised version of CICIDS2017 [26]
and demonstrate that modern intrusion detection systems must ad-
dress concept drift in order to be effective. We envision that future
work may build on INSOMNIA in order to design robust intrusion
detection models that can be sustained over time.

ACKNOWLEDGEMENTS
This research has been supported in part by the UK EP/P009301/1
EPSRC research grant.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, ..., and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems. https://www.tensorflow.org/

[2] Charu C. Aggarwal, Xiangnan Kong, Quanquan Gu, Jiawei Han, and Philip S.
Yu. 2014. Active Learning: A Survey. In Data Classification: Algorithms and
Applications.

[3] Giuseppina Andresini, Annalisa Appice, and Donato Malerba. 2021. Autoencoder-
based deep metric learning for network intrusion detection. Information Sciences
569 (2021).

[4] Giuseppina Andresini, Annalisa Appice, and Donato Malerba. 2021. Near-
est cluster-based intrusion detection through convolutional neural networks.
Knowledge-Based Systems 216 (2021).

[5] Giuseppina Andresini, Annalisa Appice, Nicola Di Mauro, Corrado Loglisci, and
Donato Malerba. 2020. Multi-Channel Deep Feature Learning for Intrusion
Detection. IEEE Access 8 (2020).

[6] Giuseppina Andresini, Annalisa Appice, Luca De Rose, and Donato Malerba. 2021.
GAN augmentation to deal with imbalance in imaging-based intrusion detection.
Future Generation Computer Systems 123 (2021).

[7] Annalisa Appice, Corrado Loglisci, and Donato Malerba. 2018. Active learning
via collective inference in network regression problems. Information Sciences
(2018).

[8] Giovanni Apruzzese, Fabio Pierazzi, Michele Colajanni, and Mirco Marchetti.
2017. Detection and threat prioritization of pivoting attacks in large networks.

http://www.di.uniba.it/~andresini/insomnia.html
https://www.tensorflow.org/

IEEE Transactions on Emerging Topics in Computing 8, 2 (2017).
[9] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, Fabio

Pierazzi, Christian Wressnegger, Lorenzo Cavallaro, and Konrad Rieck. 2022. Dos
and Don’ts of Machine Learning in Computer Security. In Proc. of the USENIX
Security Symposium.

[10] Stefan Axelsson. 2000. The Base-Rate Fallacy and the Difficulty of Intrusion
Detection. ACM Transactions on Information and System Security (TISSEC) (2000).

[11] Hubert Baniecki, Wojciech Kretowicz, Piotr Piatyszek, Jakub Wisniewski, and
Przemyslaw Biecek. 2020. dalex: Responsible Machine Learning with Interactive
Explainability and Fairness in Python. arXiv:2012.14406 (2020). https://github.
com/ModelOriented/DALEX/

[12] Federico Barbero, Feargus Pendlebury, Fabio Pierazzi, and Lorenzo Cavallaro.
2020. Transcending Transcend: RevisitingMalware Classificationwith Conformal
Evaluation. CoRR abs/2010.03856 (2020).

[13] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. 2011. Algorithms
for Hyper-Parameter Optimization. In Advances in Neural Information Processing
Systems (NeurIPS).

[14] James Bergstra, Daniel Yamins, and David D. Cox. 2013. Making a Science of
Model Search: Hyperparameter Optimization in Hundreds of Dimensions for
Vision Architectures. In Proc. of the International Conference on Machine Learning
(ICML).

[15] Przemyslaw Biecek. 2018. Dalex: Explainers for complex predictive models in R.
Journal of Machine Learning Research 19 (11 2018).

[16] Avrim Blum and Tom M. Mitchell. 1998. Combining Labeled and Unlabeled Data
with Co-Training. In Proc. of the ACM Conference on Learning Theory (COLT).

[17] Leo Breiman. 2001. Random Forests. Machine Learning (2001).
[18] Anna L. Buczak and Erhan Guven. 2016. A Survey of Data Mining and Machine

Learning Methods for Cyber Security Intrusion Detection. IEEE Communications
Surveys & Tutorials (2016).

[19] Francisco M. Castro, Manuel J. Marín-Jiménez, Nicolás Guil, Cordelia Schmid,
and Karteek Alahari. 2018. End-to-End Incremental Learning. In Proc. of the
European Conference on Computer Vision (ECCV) (Lecture Notes in Computer
Science). Springer.

[20] B. B. Chaudhuri. 1996. A new definition of neighborhood of a point in multi-
dimensional space. Pattern Recognition Letters (1996).

[21] François Chollet et al. 2015. Keras. https://keras.io.
[22] Bruno L. Dalmazo, João P. Vilela, andMarilia Curado. 2017. Performance Analysis

of Network Traffic Predictors in the Cloud. Journal of Network and Systems
Management (2017).

[23] Abebe Abeshu Diro and Naveen Chilamkurti. 2018. Distributed attack detection
scheme using deep learning approach for Internet of Things. Future Generation
Computer Systems (2018).

[24] Gerard Draper-Gil, Arash Habibi Lashkari, Mohammad Saiful Islam Mamun, and
Ali A. Ghorbani. 2016. Characterization of Encrypted and VPN Traffic using
Time-related Features. In Proc. of the International Conference on Information
Systems Security and Privacy (ICISSP). SciTePress.

[25] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. DeepLog: Anomaly
Detection and Diagnosis from System Logs through Deep Learning. In Proc. of
the ACM Conference on Computer and Communications Security (CCS).

[26] Gints Engelen, Vera Rimmer, and Wouter Joosen. 2021. Troubleshooting an Intru-
sion Detection Dataset: the CICIDS2017 Case Study. In IEEE European Symposium
on Security and Privacy Workshops (EuroS&PW).

[27] Aaron Fisher, Cynthia Rudin, and Francesca Dominici. 2019. All Models are
Wrong, but Many are Useful: Learning a Variable’s Importance by Studying an
Entire Class of Prediction Models Simultaneously. Journal of Machine Learning
Research (JMLR) (2019).

[28] Prahlad Fogla, Monirul I. Sharif, Roberto Perdisci, Oleg M. Kolesnikov, andWenke
Lee. 2006. Polymorphic Blending Attacks. In Proc. of the USENIX Security Sympo-
sium.

[29] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of train-
ing deep feedforward neural networks. In International Conference on Artificial
Intelligence and Statistics (AISTATS). JMLR.

[30] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep Sparse Recti-
fier Neural Networks.. In International Conference on Artificial Intelligence and
Statistics (AISTATS). JMLR.

[31] Ian J. Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio.
2014. An empirical investigation of catastrophic forgeting in gradient based neu-
ral networks. In Proc. of the International Conference on Learning Representations
(ICLR).

[32] Yves Grandvalet and Yoshua Bengio. 2004. Semi-supervised Learning by Entropy
Minimization. In Advances in Neural Information Processing Systems (NeurIPS).

[33] Guofei Gu, Roberto Perdisci, Junjie Zhang, and Wenke Lee. 2008. Botminer:
Clustering analysis of network traffic for protocol-and structure-independent
botnet detection. (2008).

[34] Guofei Gu, Phillip A Porras, Vinod Yegneswaran, Martin W Fong, and Wenke
Lee. 2007. Bothunter: Detecting malware infection through ids-driven dialog
correlation.. In USENIX Security Symposium, Vol. 7.

[35] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca
Giannotti, and Dino Pedreschi. 2018. A survey of methods for explaining black
box models. Comput. Surveys (2018).

[36] Roberto Jordaney, Kumar Sharad, Santanu Kumar Dash, ZhiWang, Davide Papini,
Ilia Nouretdinov, and Lorenzo Cavallaro. 2017. Transcend: Detecting Concept
Drift in Malware Classification Models. In Proc. of the USENIX Security Sympo-
sium.

[37] Zeliang Kan, Feargus Pendlebury, Fabio Pierazzi, and Lorenzo Cavallaro. 2021.
Investigating Labelless Drift Adaptation for Malware Detection. In Proc. of the
ACM Workshop on Artificial Intelligence and Security (AISec).

[38] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Op-
timization. In Proc. of the International Conference on Learning Representations
(ICLR).

[39] Arash Habibi Lashkari, Gerard Draper-Gil, Mohammad Saiful Islam Mamun,
and Ali A. Ghorbani. 2017. Characterization of Tor Traffic using Time based
Features. In Proc. of the International Conference on Information Systems Security
and Privacy (ICISSP). SciTePress.

[40] David D. Lewis and William A. Gale. 1994. A Sequential Algorithm for Training
Text Classifiers. In Proc. of the International ACM Conference of the Special Interest
Group on Information Retrieval (SIGIR).

[41] Yinhui Li, Jingbo Xia, Silan Zhang, Jiakai Yan, Xiaochuan Ai, and Kuobin Dai.
2012. An efficient intrusion detection system based on support vector machines
and gradually feature removal method. Expert Systems With Applications (2012).

[42] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, João Gama, and Guangquan Zhang. 2019.
Learning under Concept Drift: A Review. IEEE Transactions on Knowledge and
Data Engineering (TKDE) (2019).

[43] Mirco Marchetti, Fabio Pierazzi, Michele Colajanni, and Alessandro Guido. 2016.
Analysis of high volumes of network traffic for advanced persistent threat detec-
tion. Computer Networks (2016).

[44] DiegoMarrón, Eduard Ayguadé, José R. Herrero, Jesse Read, and Albert Bifet. 2017.
Low-latency multi-threaded ensemble learning for dynamic big data streams. In
Proc. of the IEEE International Conference on Big Data (Big Data).

[45] McAfee Labs. 2016. McAfee Labs Threats Report, December 2016.
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-
threats-dec-2016.pdf.

[46] Brad Miller, Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Rekha Bach-
wani, Riyaz Faizullabhoy, Ling Huang, Vaishaal Shankar, Tony Wu, George Yiu,
Anthony D. Joseph, and J. D. Tygar. 2016. Reviewer Integration and Performance
Measurement for Malware Detection. In Proc. of the Conference on Detection of
Intrusions and Malware & Vulnerability Assessment (DIMVA).

[47] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. 2018. Kitsune:
An Ensemble of Autoencoders for Online Network Intrusion Detection. In Proc.
of the Network and Distributed System Security Symposium (NDSS).

[48] Marwa R. Mohamed, Abdurrahman A. Nasr, Ibrahim F. Tarrad, and Mohamed Z.
Abdulmageed. 2019. Exploiting Incremental Classifiers for the Training of an
Adaptive Intrusion Detection Model. Int. Journal of Network Security (2019).

[49] Jose G. Moreno-Torres, Troy Raeder, Rocío Alaíz-Rodríguez, Nitesh V. Chawla,
and Francisco Herrera. 2012. A unifying view on dataset shift in classification.
Pattern Recognition (2012).

[50] Fakhroddin Noorbehbahani, Ali Fanian, Sayyed Rasoul Mousavi, and Homa
Hasannejad. 2017. An incremental intrusion detection system using a new semi-
supervised stream classification method. International Journal of Communication
Systems (2017).

[51] S. J. Pan and Q. Yang. 2010. A Survey on Transfer Learning. IEEE Transactions on
Knowledge and Data Engineering (TKDE) (2010).

[52] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake VanderPlas, Alexandre Passos, David Cournapeau,
Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay. 2011. Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research (JMLR)
(2011).

[53] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and
Lorenzo Cavallaro. 2018. Enabling Fair ML Evaluations for Security. In Proc. of
the ACM Conference on Computer and Communications Security (CCS) (posters).

[54] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and
Lorenzo Cavallaro. 2019. TESSERACT: Eliminating Experimental Bias in Malware
Classification across Space and Time. In Proc. of the USENIX Security Symposium.

[55] Deboleena Roy, Priyadarshini Panda, and Kaushik Roy. 2020. Tree-CNN: A hier-
archical Deep Convolutional Neural Network for incremental learning. Neural
Networks (2020).

[56] Burr Settles. 2012. Active Learning Literature Survey. Synthesis Lectures on
Artificial Intelligence and Machine Learning (2012).

[57] Amin Shahraki, Mahmoud Abbasi, Amir Taherkordi, and Anca Delia Jurcut.
2021. Active Learning for Network Traffic Classification: A Technical Survey.
arXiv:2106.06933 [cs.NI]

[58] Iman Sharafaldin, Arash Habibi Lashkari, and Ali Ghorbani. 2018. Toward Gener-
ating a New Intrusion Detection Dataset and Intrusion Traffic Characterization.
In Proc. of the International Conference on Information Systems Security and Privacy

https://github.com/ModelOriented/DALEX/
https://github.com/ModelOriented/DALEX/
https://keras.io
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-dec-2016.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-dec-2016.pdf
https://arxiv.org/abs/2106.06933

(ICISSP). SciTePress.
[59] Yun Shen, Enrico Mariconti, Pierre-Antoine Vervier, and Gianluca Stringhini.

2018. Tiresias: Predicting Security Events Through Deep Learning. In Proc. of the
ACM Conference on Computer and Communications Security (CCS).

[60] Nathan Shone, Nguyen Ngoc Tran, Vu Dinh Phai, and Qi Shi. 2018. A Deep Learn-
ing Approach to Network Intrusion Detection. IEEE Transactions on Emerging
Topics in Computational Intelligence (TETCI) (2018).

[61] Xiaokui Shu, Danfeng Yao, and Naren Ramakrishnan. 2015. Unearthing Stealthy
Program Attacks Buried in Extremely Long Execution Paths. In Proc. of the ACM
Conference on Computer and Communications Security (CCS).

[62] Robin Sommer and Vern Paxson. 2010. Outside the Closed World: On Using Ma-
chine Learning for Network Intrusion Detection. In Proc. of the IEEE Symposium
on Security and Privacy (S&P).

[63] Sona Taheri, Adil M. Bagirov, Iqbal Gondal, and Simon Brown. 2020. Cyberattack
triage using incremental clustering for intrusion detection systems. International
Journal of Information Security (2020).

[64] Kimberly Tam, Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, and Lorenzo Caval-
laro. 2017. The Evolution of Android Malware and Android Analysis Techniques.
Comput. Surveys (2017).

[65] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chun-
fang Liu. 2018. A Survey on Deep Transfer Learning. In Proc. of the International
Conference on Artificial Neural Networks and Machine Learning (ICANN).

[66] R. Tibshirani, Trevor Hastie, B. Narasimhan, and Gilbert Chu. 2002. Diagnosis
of multiple cancer types by shrunken centroids of gene expression. Proc. of the
National Academy of Sciences (PNAS) (2002).

[67] Ke Wang, Gabriela Cretu, and Salvatore J Stolfo. 2005. Anomalous payload-based
worm detection and signature generation. In International Workshop on Recent
Advances in Intrusion Detection. Springer.

[68] Alexander Warnecke, Daniel Arp, Christian Wressnegger, and Konrad Rieck.
2020. Evaluating explanation methods for deep learning in security. In Proc. of
the IEEE European Symposium on Security and Privacy (EuroS&P).

[69] Ning Xie, Gabrielle Ras, Marcel van Gerven, and Derek Doran. 2020. Explainable
deep learning: A field guide for the uninitiated. arXiv preprint arXiv:2004.14545
(2020).

[70] Ke Xu, Yingjiu Li, Robert H. Deng, Kai Chen, and Jiayun Xu. 2019. DroidEvolver:
Self-Evolving Android Malware Detection System. In Proc. of the IEEE European
Symposium on Security and Privacy (EuroS&P).

[71] Limin Yang, Wenbo Guo, Qingying Hao, Arridhana Ciptadi, Ali Ahmadzade-
hand, Xinyu Xing, and Gang Wang. 2021. CADE: Detecting and Explaining
Concept Drift Samples for Security Applications. In Proc. of the USENIX Security
Symposium.

[72] Yazhou Yang and Marco Loog. 2019. Single shot active learning using pseudo
annotators. Pattern Recognition (2019).

[73] Chunlin Zhang, Ju Jiang, and Mohamed S. Kamel. 2005. Intrusion detection using
hierarchical neural networks. Pattern Recognition Letters (2005).

[74] Xiaojin Jerry Zhu. 2005. Semi-supervised learning literature survey. Technical
Report. University of Wisconsin-Madison Department of Computer Sciences.

Table 2: Hyperparameter search space for the DNN model.

Hyperparameter Values

batch size { 25, 26, 27, 28, 29 }
learning rate [0.0001, 0.01]
dropout [0,1]
#neurons per hidden layer { 25, 26,27, 28, 29 }

A IMPLEMENTATION
We develop INSOMNIA in Python 3, with the DNN architecture
implemented using Keras 2.4 [21]—a high-level neural network
API with TensorFlow [1] as the backend. The network comprises 3
fully-connected layers followed by two dropout layers to prevent
overfitting. We apply the ReLu [30] activation to the hidden layers
and to obtain output probabilities we use the softmax activation
function on the final layer.

Weights are initialized following the Xavier scheme [29]—although
during incremental learning, weights from the previous DNNmodel
are used for fine-tuning each new model. The gradient-based opti-
mization is performed using the Adam update rule [38].

Hyperparameters are optimized using the tree-structured Parzen
estimator algorithm [13] as implemented in theHyperopt library [14].
For optimization we perform a random stratified split to further
divide the training set into training and validation sets at a ratio of
4:1, following the Pareto Principle. We select the hyperparameter
configuration that achieves the lowest validation loss. The hyper-
parameter search space is reported in Table 2. For the No-Update
baseline—also the vanilla DNN described in §1—we use this DNN
alone without the update mechanism supplied by INSOMNIA.

For the Nearest-Centroid-based label estimation we use the clas-
sifier from the Scikit-learn [52] implementation. We measure the
global feature relevance for the DNN using the DALEX [11] Python
package 1.2.0.

We extend the TESSERACT [53, 54] framework to apply to the
network intrusion detection setting. Notably we add functionality
to temporally partition data using count-based windows rather than
time splits, as well as a calculation of the impact of latency periods
during model updates. Furthermore, we build on TESSERACT’s
post-classification stages for active learning to incorporate label
estimation, fine-tuning, and explainability.

For the Kitsune [47] baseline we use the public implementa-
tion released by the authors. As the RMSE threshold, we use the
maximum RMSE of the benign traces during calibration. As the
𝑚 parameter, i.e., the maximum number of inputs for any given
autoencoder in the ensemble layer, we use the default size𝑚 = 10.

	Abstract
	1 Introduction
	2 Challenges and Motivation
	3 Methodology
	3.1 Overview
	3.2 Initialization Phase
	3.3 Incremental Learning Phase
	3.4 Explanations Phase

	4 Evaluation
	4.1 CICIDS2017 Network Traffic Data
	4.2 Experimental Setup
	4.3 Results

	5 Limitations and Future Work
	6 Related work
	7 Availability
	8 Conclusion
	References
	A Implementation

