
Investigating Labelless Dri Adaptation for Malware Detection
Zeliang Kan∗†, Feargus Pendlebury†‡∥, Fabio Pierazzi∗, Lorenzo Cavallaro†

∗King’s College London
†University College London

‡Royal Holloway, University of London
∥International Computer Science Institute

ABSTRACT

The evolution of malware has long plagued machine learning-based
detection systems, as malware authors develop innovative strate-
gies to evade detection and chase prots. This induces concept drift
as the test distribution diverges from the training, causing perfor-
mance decay that requires constant monitoring and adaptation.

In this work, we analyze the adaptation strategy used byDroidE-
volver, a state-of-the-art learning system that self-updates using
pseudo-labels to avoid the high overhead associated with obtaining
a new ground truth. After removing sources of experimental bias
present in the original evaluation, we identify a number of aws
in the generation and integration of these pseudo-labels, leading
to a rapid onset of performance degradation as the model poi-
sons itself. We propose DroidEvolver++, a more robust variant
of DroidEvolver, to address these issues and highlight the role
of pseudo-labels in addressing concept drift. We test the tolerance
of the adaptation strategy versus dierent degrees of pseudo-label
noise and propose the adoption of methods to ensure only high-
quality pseudo-labels are used for updates.

Ultimately, we conclude that the use of pseudo-labeling remains
a promising solution to limitations on labeling capacity, but great
care must be taken when designing update mechanisms to avoid
negative feedback loops and self-poisoning which have catastrophic
eects on performance.

CCS CONCEPTS

• Computing methodologies→Machine learning; • Security
and privacy → Intrusion/anomaly detection and malware

mitigation.

KEYWORDS

Machine Learning; Malware Detection; Online Learning

1 INTRODUCTION

Machine learning-based malware detectors operate in hostile, dy-
namically changing environments. Malware authors utilize obfus-
cation [1, 24] and evasion techniques [4, 42, 60] to avoid detection,
develop new technologies to increase infectivity [55], and occa-
sionally adopt new paradigms with greater prot potential (e.g.,
ransomware [27]). Additionally, the underlying platform continues
to evolve, with new features, APIs, and programming practices
further distorting the boundary between goodware and malware.

This activity causes uctuations in the data distribution, a phe-
nomenon known as concept drift [23, 25, 36], in which new examples
begin to dier signicantly from those observed during the training
phase—i.e., the denition of what malware is changes over time.

Depending on the root cause, concept drift can be sudden and dra-
matic, or subtle and gradual [21], but nevertheless it violates the
i.i.d. assumption required by most classication algorithms. This
violation causes an ongoing performance degradation that requires
constant monitoring and adaptation [41].

One promising direction for overcoming this issue is concept
drift adaptation, in which new knowledge is introduced to the
classier to reduce the cumulative prediction error. This class of
methodologies includes active learning [49, 50] and online learn-
ing [9, 38, 39] techniques. While generally eective at mitigating
performance degradation, these techniques require high-quality
labels to be available during test time, which are usually expensive
and time-consuming to obtain [35, 41].

A promising research direction that mitigates the high cost of la-
beling is weak supervision (e.g., semi-supervised learning), in which
a model is trained using both labeled and unlabeled data. One
branch of research focuses on the use of pseudo-labels to provide
noisy—but suciently accurate—labels for new data with which to
update the model [22, 30, 44]. An exemplary work in this area ap-
plied to Android malware detection is DroidEvolver [59], which
proposes updating an ensemble of online learners using its pre-
dicted labels as pseudo-labels to eliminate labeling costs altogether.

In this work, we critically examine such a strategy in greater
depth, using DroidEvolver [59] as a case study. First, we remove
sources of experimental bias present in the initial evaluation, ap-
plying DroidEvolver to a dataset of 129,728 apps where malware
is the minority class (~10% prevalence, as recommended in [41]).
We observe a catastrophic self-poisoning eect which causes per-
formance to degrade suddenly and signicantly. To explain these
eects, we identify several weaknesses in the system design relating
to the generation of pseudo-labels: assumptions on dataset diversity,
biased ensemble decision functions, and incorrect integration of
predicted labels. We propose DroidEvolver++, a new variant of
DroidEvolver, which addresses these issues, and we quantify the
eect of each change through ablation studies.

This leads us to further explore the degree to which pseudo-
labels might be useful in drifting security settings where the as-
sumptions required for semi-supervised learning may be violated.
We investigate the tolerance of DroidEvolver++ to label noise
to demonstrate how the accuracy of pseudo-labels hinders the ca-
pabilities of the model. Similarly, we show how methodologies
for ensuring high-quality pseudo-labels by thresholding on model
condence [30] and model uncertainty [44] can be applied to time-
aware malware detection.

Ultimately, we conclude that the use of pseudo-labeling is still
a promising solution to limitations on labeling capacity, but great
care must be taken when designing the update mechanism to avoid

negative feedback loops and self-poisoning. We urge caution when
using predicted labels alone as pseudo-labels for malware detection.

In summary, we provide the following contributions:

� We identify shortcomings inDroidEvolver [59], the current
state-of-the-art drift adaptation approach for malware detec-
tion (Ÿ3), and outline the lessons learned as well as proposing a
more robust and e�ective variant (Ÿ4).

� We further explore the use of pseudo-labels for malware detection
and the conditions under which they might still be a valuable
strategy for updating models in the face of concept drift. We show
that using a model's predicted labels as pseudo-labels greatly
hinders its performance relative to the accuracy of its predictions,
but that methods to improve the quality of pseudo-labeling can
mitigate this to some degree (Ÿ5).

� To support future e�orts in malware drift adaptation, we release
the code forDroidEvolver++ and our implementation of alter-
native pseudo-label selection strategies (Ÿ8).

2 DRIFT ADAPTATION
In this section we provide some background on the problem of
concept drift (Ÿ2.1) and how the use of online learning has been
proposed to mitigate its impact (Ÿ2.2). Finally we give an overview
of DroidEvolver [59], the drift adaptation approach that forms
the core case study in our analysis (Ÿ2.3).

2.1 Concept Drift
Dataset shiftis a common phenomenon in classi�cation tasks when
the joint distribution of inputs and outputs di�ers between training
and test time [43]. Dataset shift can come in many forms: a change in
the feature distribution (covariate shift), a change in the prevalence
of a particular class (prior probabilityor label shift), or a change
in the class de�nition itself (concept shift). These shifts are often
intertwined and it can be di�cult to attribute performance loss to a
particular e�ect, soconcept driftis often used as an umbrella term
for shifts in general, particularly within the security literature [e.g.,
15, 23, 46, 53]�we stick to this convention throughout this work.

Concept drift often a�ects real-world classi�er deployments,
either as a result of experimental bias during training and calibra-
tion [41] or due to a `natural' change in the properties of the target
classes over longer periods (e.g., the problem of aging faces in facial
recognition [37]). Sources of drift in malware classi�cation can be
fairly benign, such as changes in market trends or new developer
APIs [62]. However, the main driving force of drift is the develop-
ment of new malware techniques to evade detection [1, 4, 42, 60],
increase infection rates [55], and generate greater pro�ts [27]. This
results in an evolution of malware over time, which reduces the
ability of classi�ers to recognize newer examples [3, 25, 35, 41].

2.2 Online Learning for Malware Detection
In the online learning setting, data is provided as a stream of obser-
vations in sequence, rather than as a batch of examples.

Typically, an online learner will make a prediction for each new
observation, and then subsequently update itself once the true label
becomes available [9]. Online learners are useful for adapting to
new patterns which makes them a useful candidate for tackling
concept drift as malware evolves over time.

Another advantage of online learning is that it allows a trained
detection system to be updated at a lower cost, as the system can
be partially retrained using the new data only, and many methods
reduce computation further (e.g., passive-aggressive classi�ers [14]
that update only when the model makes an incorrect prediction).

However, there are still limitations of online learners. In par-
ticular, online learners will graduallyunlearnpreviously learned
information and are also susceptible tocatastrophic interference[20,
26, 28, 34] in which past information is forgotten completely and
abruptly. Like all ML algorithms, they are also sensitive to the accu-
racy of new labels, but are speci�cally a�ected by whether labeling
capacity can keep up with the volume of the incoming unlabeled
data, in contrast to typical supervised batch learning where training
only occurs after all ground truth labels have been obtained.

Online learning has been proposed for the detection of An-
droid malware, most notably in the case ofCasandra [38] and
DroidOL [39]. Both build on Weisfeiler-Lehman graph kernels [51]
to extract semantic features from the apps, whileCasandra uses
a Con�dence Weighted algorithm [17] as its online learner and
DroidOL uses a Passive Aggressive algorithm [14]. In the remain-
der of the section we will explore a more recent work,DroidE-
volver [59], which departs from the previous methods by relying
on pseudo-labelsfor updates, rather than ground truth labels.

2.3 Adaptation Without Labels: DroidEvolver
Here we provide an overview ofDroidEvolver [59] as a case study
in our analysis on the use of pseudo-labels for malware detection.

DroidEvolver employs an ensemble of �ve linear online learn-
ing models: Passive Aggressive (PA) [14], Online Gradient Descent
(OGD) [63], Adaptive Regularization of Weight Vectors (AROW) [14],
Regularized Dual Averaging (RDA) [58], and Adaptive Forward-
Backward Splitting (Ada-FOBOS) [18]. Each uses a binary feature
space where 0 and 1 indicate the absence or presence of an API
call, respectively. API calls naturally re�ect the evolution of both
the Android framework and the apps themselves, and can be easily
extracted from bytecode using static methods [7, 16]. The ensemble
is trained using an initial dataset of labeled malware and goodware.

At test time,DroidEvolver uses the weighted sum of decision
scores as the ensemble decision function to aggregate the predic-
tions of the underlying models, however the predictions ofaging
models are excluded from the sum. To measure whether a model is
aging or not, a �xed-lengthapp bu�er is maintained which holds a
small set of apps that aim to be representative of the distribution
up to the current test period. AJuvenilization Indicator(JI) score
is calculated as the proportion of apps in the app bu�er, of the
same class, which have decision scores greater than the new test
object. If the JI score falls below or above a precalibrated lower and
upper threshold, respectively, then the model is marked as aging.
Note that this notion ofdissimilarity for identifying drifting objects
is essentially the same as the nonconformity score (NCM) used
in Transcend [8, 23] and other methods derived from conformal
prediction theory [40, 57].

Once a model is marked as aging, anevolutionis triggered to
revitalize the model. In this case, the update mechanism of the
underlying online learner is invoked on the new drifting object,
using the ensemble prediction as the label (i.e., the pseudo-label).

Additionally, the feature set is extended to include any previously
unseen features present in the new object. If either none or all of
the models are aging, no update will occur.

To evaluateDroidEvolver , the original authors perform a com-
prehensive series of experiments, testing the performance with and
without the presence of concept drift and measuring the overhead
of the evolution process. They use a dataset of 68,016 apps spanning
6 years with a roughly balanced class ratio (~51% malware).

Note that we do not mean to diminish the research contributions
of DroidEvolver , which was one of the �rst approaches to tackle
the trade-o� between performance over time and the e�ciency of
updating detection models. To this end,DroidEvolver signi�cantly
outperformed contemporary state-of-the-art approaches and it is
a credit to the quality and openness of the work that we have
been able to able to extend it and use it as our case study. Our
intention is to build onDroidEvolver 's contributions by re�ning
our understanding of pseudo-labels in malware detection systems,
to foster future work in the area of drift adaptation.

3 IDENTIFYING CHALLENGES IN
PSEUDO-LABEL GENERATION

We assess the impact of experimental bias in the original evaluation
of DroidEvolver [59] and identify weaknesses in its design.

3.1 Experimental Setup

Dataset. We use a dataset consisting of 129,728 Android appli-
cations with 116,993 goodware and 12,735 malware (a ratio of ap-
proximately 9:1, as suggested by Pendlebury et al. [41]). Features
are binary, with 0 and 1 indicating the absence or presence of an
API call, respectively. We use theDroidEvolver feature extrac-
tion script to build the feature space. The sample is taken from the
public AndroZoo dataset [2] where each app is associated with
VirusTotal (VT) detection metadata, which is used to derive labels.
We follow examples in prior work [35, 41] and mark apps with
0 VT detections as goodware and apps with 4+ VT detections as
malware. We note that removing grayware may positively in�ate
the results [6] and this should be taken into account when interpret-
ing them. However, having a clean separation between malware
and goodware reduces natural label noise and helps us more con�-
dently control this variable to evaluate the systems' tolerance to
label noise in later experiments (Ÿ5.2). The dataset spans three years.
For performing a time-aware evaluation, we use the �rst year as
training data and partition the remaining data into 24 test periods
of one month each.

Metrics. To measure overall detection performance we use Preci-
sion, Recall, and the� 1 score. We also keep track of thedrift rate, i.e.,
the proportion of new inputs in each test period that are identi�ed
as drifting. ForDroidEvolver , drifting objects are those whose
decision score falls outside the JI thresholds.DroidEvolver does
not update models which are not aging, and models are marked as
aging when new inputs are marked as drifting with respect to that
model; therefore we are interested in maintaining a low drift rate
over time. When ground truth labels are used for model updates,
the drift rate re�ects the labeling cost. When pseudo-labels are used,
high drift rates increase the risk that no model in the ensemble

will correctly classify new objects which leads to decay. Note that
this metric relies on the ability ofDroidEvolver to accurately
identify drifting objects which may be undermined as the system
deteriorates. In Ÿ6 we discuss the use of external drift detectors to
support a pseudo-labeling system.

Vanilla baseline (PassiveAggressive). To act as a simple base-
line and to demonstrate the presence of drift in the dataset, we use
the Passive-Aggressive classi�er [14] from the DroidEvolver en-
semblewithoutperforming any model updates (PassiveAggressive).
In this con�guration, the classi�er is equivalent to a linear support
vector machine [13]. To measure the severity of the drift, we use
Transcend [8, 23], a state-of-the-art approach to equip classi�ers
with a rejection option (as in abstaining classi�ers), due to its simi-
larity to the drift identi�cation mechanism used byDroidEvolver .
However, this is simply for the purpose of illustrating the drift; we
do not reject any of the identi�ed drifting points.

Threshold tuning. The pair of JI thresholds play a critical role in
distinguishing between drifting and non-drifting points. To tune the
thresholds, we initialize the model pool with the �rst eleven months
of training data and use the subsequent month as a calibration
set. We choose the JI threshold pair that performs the best on
the calibration set, which is 0.3 and 0.7 for the lower and upper
thresholds, respectively.

3.2 Assumptions on Data Distribution
Before analyzing the design ofDroidEvolver itself, we �rst exam-
ine two assumptions regarding the data distribution, which may
di�er from a realistic setting.

Class balance. As shown by Pendlebury et al. [41], two forms of
experimental bias,spatialandtemporal bias, are a common cause
for overin�ated results in machine learning-based malware experi-
ments. Temporal bias results when a dataset is temporally inconsis-
tent, e.g., when the training data does not precede the test data or
when classes are sampled from di�ering periods. Spatial bias refers
to when an unrealistic ratio of malware to goodware is used in the
test data. This is of particular importance in security, where the
positive class is often the minority class. Overrepresenting this class
leads to Precision being erroneously in�ated [41]. As demonstrated
in their time-aware evaluation,DroidEvolver 's evaluation is tem-
porally consistent and not a�ected by this experimental bias. We
thus assess the impact of spatial bias on the system's performance.

We evaluateDroidEvolver andPassiveAggressivewith two
di�erent dataset compositions. In the �rst, we downsample the
amount of goodware to achieve a 50/50 balance between classes. In
the second, we use our imbalanced dataset in its entirety.

Figures 1a and 1b show the performance ofPassiveAggressive.
The system clearly su�ers from performance decay as the� 1 score
gradually decays over time on both balanced (left) and imbalanced
(right) datasets. In both cases, the rate of drifting objects gradu-
ally increases, demonstrating the presence of concept drift in the
dataset.PassiveAggressiveis sensitive to spatial bias [41], with
performance decay more pronounced on the imbalanced data. The
overall Precision in both cases is relatively stable, but Recall su�ers
greatly, indicating a large amount of False Negatives.

(a) PassiveAggressive [14], 50% (b) PassiveAggressive [14], 10%

(c) DroidEvolver [59], 50% (d) DroidEvolver [59], 10%

Figure 1: PassiveAggressive [14] without updates (top) vs.
DroidEvolver [59] (bottom) applied to test data with ~50%
malware (left column) vs. ~10% malware (right column).

The performance ofDroidEvolver is shown in Figures 1c and 1d.
On the balanced dataset (left), performance quickly drops to an
� 1 score of ~0.65, while the Precision drops to ~0.50, equivalent
to random guessing in the balanced setting. The true base rate
represented in the imbalanced case (right) shows a starker picture,
with performance degrading severely in the �rst two months. In
2016 (i.e., from month 13), the model has high Recall, but this is an
artefact of the class ratio as the majority of samples are predicted as
malware, leading to low Precision that matches the malware base
rate of ~0.1.

From these results, we can see thatDroidEvolver , like Pas-
siveAggressive, is indeed sensitive to spatial bias, which may have
overin�ated the results of the original evaluation. However, the
low performance even in the balanced setting suggests that other
factors may be at play, which we explore in Ÿ3.3.

Dataset diversity. We also reason brie�y about other aspects of
our dataset which may contribute to the lower performance. The
dataset in the original evaluation spans from 2011 to 2016 inclusive,
with roughly 5,000 malware and 5,000 goodware in each year. As
the feature set is augmented over time, the number of features
(i.e., API calls) grows from 14,327 to 52,001 features over the 6 year
period. Our dataset contains just over twice as many apps and
contains 105,092 distinct features in the 2014 training set alone.
Even in the shorter time frame, when testing ends in Dec 2016, the

number of recorded features has increased dramatically to 249,102,
�ve times larger than the original evaluation. We hypothesize that
the increased diversity and more abrupt onset of drift may make it
di�cult for DroidEvolver to adapt in time before negative feed-
back loops of the update mechanism take over. This highlights the
sensitivity of models to speci�c datasets and we advise testing on
more than one dataset where possible (although we recognize this
is infeasible in many security settings where obtaining high quality
datasets is challenging [6]).

3.3 Weaknesses in Pseudo-Label Generation
The previous experiment shows thatDroidEvolver su�ers from
severe performance decay. As the non-updatingPassiveAggressive
outperformsDroidEvolver , and the degradation occurs faster than
the naturally occurring drift illustrated in Figures 1a and 1b, we
hypothesize that the model poisons itself due to weaknesses in
the pseudo-label generation. Given this, we examine the update
mechanism ofDroidEvolver and identify the following �aws in
addition to the erroneous dataset assumptions outlined in Ÿ3.2.

The ensemble is dominated by a subset of models. The pseudo-
labels used for updating are derived from a weighted vote between
the non-aging models in the model pool, speci�cally

Í "
9=1F 9 � G8

whereF 9 is the weight vector of the9C� model in the pool andG8
is the feature vector of the new test object. However, the di�erent
algorithms have very diverse ranges for the value ofF 9 � G8 (i.e.,
their individual decision functions). Therefore, algorithms that nat-
urally produce outputs of a larger magnitude tend to dominate the
weighted voting. In our experiments, the OGD and Ada-FOBOS
classi�ers have a larger decision output than the other three algo-
rithms. This e�ectively decreases the model diversity in the ensem-
ble, which increases the risk of performance degradation once the
e�ectiveness of OGD and Ada-FOBOS drop.

Apps in the bu�er are replaced randomly, causing a skew
toward the majority class. DroidEvolver maintains a �xed-
length app bu�er, which contains a subset of apps representing the
distribution up to the current test period. The decision scores of
new inputs are compared to decision scores of apps in the bu�er
in order to calculate the JI score that measures whether a model
is aging. The bu�er is kept fresh by replacing apps each time a
new sample is received. However, apps are replaced at random
independent of their classes, which can cause apps in the bu�er
to skew towards a particular class. This problem is exacerbated
when a realistic class balance is used (see Ÿ3.2) as one class quickly
becomes underrepresented. In the extreme case, the bu�er may
contain only samples of a single class as all apps of the other class
have been replaced, which leads to errors in the JI computation.

The JI score of app bu�er apps is not kept updated. DroidE-
volver keeps track of the JI score for apps in the app bu�er. How-
ever, these scores are not kept updated, which means that the JI
score of new objects will be calculated using decision scores from
many past models. These scores may not be representative of the
current distribution, leading to incorrect decisions about which
objects are drifting. Ideally, the JI score should be recomputed using
fresh decision scores from each model.

The upper JI threshold causes high con�dence predictions
to be discarded. DroidEvolver uses both a lower and an upper JI
threshold to identify drifting examples. The intuition is that objects
which are very close or very far from the decision boundary with
respect to other objects are more likely to be anomalous and thus
drifting. While the lower threshold follows established results from
other areas (e.g., the uncertainty sampling strategy from active
learning [49] and rejection thresholds ofTranscend [8, 23] rely on
the same intuition), we argue that the upper threshold is harmful to
the system. This is because it suggests that the points are clustered
in a ball (or `blob') in the decision region, with the densest region
at the centroid representing the points most representative of the
class. In such a case, it is possible to enter the class region from one
boundary, pass through the densest region, and pass out through
the opposing boundary. While this is true for many non-linear clas-
si�ers (e.g., support vector machines using an RBF kernel [13]), for
the linear binary classi�ers used in the ensemble, this is not the
case. For these classi�ers, as points move away from the decision
boundary, they only becomemorerepresentative of that class, i.e.,
the classi�er ismorecon�dent of its prediction. The corollary of this
is that DroidEvolver marks models that produce high-con�dence
predictions as aging, thus discarding high-quality pseudo-labels
from the update mechanism, increasing its susceptibility to inaccu-
rate predictions and self-poisoning.

4 DROIDEVOLVER++
To address the previously described shortcomings we propose an
extension,DroidEvolver++ . We hope that this will also provide a
more stable baseline for future work to compare against. To evaluate,
we measure the Precision, Recall,� 1 score, and drift rate, where the
drift rate is the proportion of new inputs identi�ed as drifting each
period (see Ÿ3.1).

We add a calibration step to the model pool initialization step.
This tuning step �nds the best JI threshold for detecting drifting
apps, as well as the ratio between goodware and malware in the
app bu�er. Algorithms 1 and 2 show the pseudo-code for these
operations. Note that we eliminate the upper JI threshold in order
to avoid discarding predictions with high con�dence.

We change the logic for the pseudo-label generation to use the
majority vote between all non-aging models (hard labels), instead
of the original ensemble decision function� "

9=1F 9�G8. This ensures
speci�c classi�ers do not dominate the decision due to the range of
their decision function outputs.

We also �x the percentage of malware in the app bu�er by only
replacing apps with objects of the same class. This ensures the
bu�er does not become skewed towards a particular class or that a
class loses all representation entirely.

We recompute the JI scores of apps in the app bu�er each time a
model updates. This ensures the system does not make decisions
based on outdated information.

However, we recommend that, in the default con�guration at
least, ground truth labels are used in place of pseudo-labels for
the model update. While this increases the cost of maintaining the
system, it avoids the self-poisoning e�ects which render the models
unusable during periods of extreme drift. Nevertheless, labeling
pressure is still reduced as updates only happen whenagingmodels

Algorithm 1: JI Thresholds Tuning

Result: ¹g0•g1º Best JI Thresholds
1 GCA08=, GE0;830C4= split (- CA08=);
2 models = modelpool_init (GCA08=);
3 best_score =0”0;
4 bu�er = bu�er_generation(GCA08=,<>34;B, B8I4= 2000);
5 for 8 0 to 0”9 step0”1 do
6 for 9 8¸ 0”1 to 1”0 step0”1 do
7 � 1 = DroidEvolver (models,GE0;830C4, 8, 9, bu�er);
8 if � 1 ¡ best_scorethen
9 g0•g1 = 8, 9;

10 end
11 end
12 end
13 Return¹g0•g1º;

appear in the model pool, and improving the stability of the system
overall should reduce the rate at which models age. AsDroidE-
volver 's original strength is that it does not require ground truth
labels at all, we later propose an additional mechanism to improve
the stability of the pseudo-labels to some degree (Ÿ5.1) and explore
the settings in which pseudo-labels may remain e�ective (Ÿ5.2).

4.1 Tuning Class Ratio of the App Bu�er
The �xed-length app bu�er plays a vital role in distinguishing if a
test object is drifting. The composition of apps in the bu�er, and the
degree to which they capture the current distribution, a�ects how
the model is updated. In Ÿ3.2 we demonstrated that the random
replacement of apps in the bu�er ofDroidEvolver can lead to
failure due to the class imbalance in the data. However, asDroidE-
volver++ ensures that apps only replace other apps of the same
class, we can further tune the ratio of malware to goodware in the
bu�er before performing further experiments. Note that while the
test dataset must follow a realistic malware-to-goodware ratio to
avoid spatial bias, the ratio in the app bu�er can be controlled.

To avoid data snooping, we use the �rst 11 months of 2014 as
the training data and the �nal month of 2014 as the calibration data.
After initializing the model pool, we perform a regular update on
the calibration set. We test di�erent malware rates in the range [0.1,
0.9] at increments of 0.1, following the procedure in Algorithm 2.

Figure 2 illustrates the performance ofDroidEvolver++ for
di�erent ratios with the proportion of malware shown on the hori-
zontal axis. The performance is erratic and does not show a strong
trend. However, there appears to be some consistency when the
malware rate is furthest from the calibration class distribution, at
0.8 and 0.9. Similarly, the peak performance is at 0.1, the value
closest to malware rate in the calibration set, with an� 1 score of
0.72. Given these results, we �x the malware rate in the app bu�er
at 0.1 to approximate the expected rate at inference time.

4.2 DroidEvolver++ Ablation Study
In this section, we perform an ablation study to isolate each of our
modi�cations and analyze their impact. We follow the same dataset

Algorithm 2: App Bu�er Class Ratio Tuning

Result: ABest rate of malware in app bu�er
1 GCA08=, GE0;830C4= split (- CA08=);
2 models = modelpool_init (GCA08=);
3 best_score =0”0;
4 for 8 0”1 to 0”9 step0”1 do
5 bu�er = bu�er_generation(GCA08=,<>34;B, ratio=8);
6 � 1 = DroidEvolver (models,GE0;830C4, g0, g1, bu�er);
7 if � 1 ¡ best_scorethen
8 A= 8;
9 end

10 end
11 ReturnA;

Figure 2: Impact of di�erent malware-to-goodware ratios
in the app bu�er, DroidEvolver++ trained on the �rst 11
months of 2014 and calibrated on the �nal month of 2014.

and experimental setup as described in Ÿ3.1, considering only the
more realistic imbalanced dataset setting.

We �rst conduct a control experiment with all the extensions
of DroidEvolver++ activated. Then we disable each extension in
turn, and compare the performance to the control. Figure 3a shows
the performance of the control. The� 1 score begins at 0.75 in the
initial test period, and remains relatively stable between 0.70 and
0.80 over the two-year period. Over the initial year, the� 1 score rises
on average, peaking at 0.83�although this is somewhat expected
given the use of ground truth labels. While the performance drops
in the last three months, this is related to the very small number of
samples in these months, as observed in prior work [41].

The drift rate stays relatively stable, averaging 0.50. Although
much lower thanDroidEvolver (cf. Figure 1d), this is a relatively
high rate as each drifting point must be manually labeled. This is
partially a cost of needing to maintain �ve models in the model
pool�even if a point is considered drifting only for a single model,
it must be labeled to update (and `de-age') that model. In Ÿ5.1 we
explore strategies to improve this performance-cost trade-o�.

Modi�ed Weighted Voting. We deactivate the modi�ed weighted
voting and revert to the original� "

9=1F 9 � G8 ensemble decision
function. As shown in Figure 3b, the� 1 score does not change
much compared to the control, decreasing by 0.05 in the �rst few

months. However, the Precision drops considerably while Recall
rises, indicating that the model is over-predicting the positive class.

Additionally, the average drift rate increases slightly by 6.2%.
With the drop in � 1 score, this suggests the JI comparison is marking
more samples as drifting (i.e., the models are aging faster). Similarly,
the performance degradation shows that the original weighted
voting generates more mistakes than the modi�ed majority vote
of DroidEvolver++ . In this experiment, the ensemble decision
function is used to trigger the update, but is not used to produce a
label for the update itself. As a result, though the decision may be
incorrect, it will not poison the model pool for future predictions.

Upper JI Threshold. Next we reintroduce the upper JI threshold
that DroidEvolver++ removes. As before, we use ground truth
labels for updates. As shown in Figure 3c, the� 1 score is the most
stable of the ablation settings. However, this is likely due to the
increase in the number of updates caused by many more exam-
ples being marked as drifting�~80% over all test periods. As stated
earlier, we aim to maintain as low a drift rate as possible to min-
imize the need for true labels. The average� 1 score of 0.75, only
marginally di�erent to the control, con�rms our suspicion that the
majority of predictions which have a JI above the upper threshold
are actually high-con�dence predictions�i.e., updating the model
using their true label produces only minor gains in performance.

Updated App Bu�er JI Scores. Next we deactivate the recom-
putation of JI scores for apps in the app bu�er when the model
updates. Here we see little change compared to the control, with
comparable� 1 score, but more stable Precision and Recall. As the
drift rate increases to a similar degree, we observe that there is
some trade-o� between the performance and the number of up-
dates (labeling cost), similar to what was observed when the upper
JI threshold was reintroduced.

App Bu�er Replacements. Similarly we deactivate the require-
ment that app bu�er replacements are class dependent. Still, ground
truth labels are used for model updates in this experiment. As shown
in Figure 3e, the evolution process terminates completely at the
11th month. This is because all malware in the app bu�er has been
replaced by goodware, and JI computation is no longer possible. To
assess how typical this behavior is we repeat the experiment ten
times and observe this phenomenon in four of those trials. During
the ten months for which the updates succeed, the� 1 score is lower
than that of the baseline on average, and the model exhibits the
same tendency to overpredict malware as with the weighted voting.

We conclude that random replacement of the app bu�er reduces
the reliability of the system, especially given the imbalance between
malware and goodware expected in the wild.

Ground Truth vs. Pseudo-Labels. Finally, we evaluate whether,
in light of the other improvements,DroidEvolver++ is able to
operate using pseudo-labels, which is the core contribution of the
original DroidEvolver . As shown in Figure 3f, the quality of the
pseudo-labels is simply not high enough for this. The� 1 score drops
signi�cantly from 0.75 to 0.05 over 24 months, staying below 0.30 for
most test periods. Precision decreases rapidly, and Recall increases
slowly as the model poisons itself with spurious pseudo-labels and
begins to overpredict the positive class. While the drift rate is very

(a) DroidEvolver++ (b) with original decision function (c) with upper JI threshold

(d) with original pre-update JI scores (e) with original random app replacement (f) with pseudo-labels

Figure 3: Ablation study on DroidEvolver++ where each new component is in turn reverted back to its original form. All
experiments in this study use ground truth labels except that shown in Figure 3f which uses pseudo-labels only. For those that
use ground truth labels to perform updates, higher drift rates correspond to more updates and thus higher labeling costs.

low, averaging 0.25, the low performance indicates that this is due
to a failure of the system to recognize drifting objects.

This leads us to the conclusion that using a malware detector's
own predicted labels as pseudo-labels is unlikely to be a viable
solution to the trade-o� between robustness to drift and labeling
cost. In the following, we aim to explore this notion in more depth
to analyze its strengths and limitations, and derive lessons learned.

5 THE LIMITS OF SELF-LEARNING IN
MALWARE DETECTION

The core strength ofDroidEvolver is the ability to use its own pre-
dicted labels as pseudo-labels for self-learning and eschew manual
labeling entirely. However, our experiments in Ÿ3 and Ÿ4, show that
the model can rapidly poison itself with catastrophic e�ects on the
performance. Nevertheless, the proposal is still a tantalizing one, so
in this section we examine in more depth whether higher quality
pseudo-labels can be generated and if there are certain conditions
that allow for self-learning with pseudo-labels to be more e�ective.

In the following, we use the same experimental setup as described
in Ÿ3.1, initializing the model with data from 2014. However, due to
the rapid performance degradation, we focus on 2015 alone as the
test data. We useDroidEvolver++ exclusively to ensure the other
DroidEvolver weaknesses (Ÿ3) do not act as confounding factors.
As before, we measure Precision, Recall,� 1 score, and the drift rate,
where the drift rate is the proportion of new inputs identi�ed as
drifting each period.

5.1 Uncertainty-Aware Pseudo-Label Selection
An important assumption for semi-supervised learning is that the
decision boundary lies in low-density regions [12]. To achieve this,

common pseudo-labeling methodologies aim to generate pseudo-
labels usinghigh-con�dencepredictions only [30, 52]. This intuition
is straightforward to visualize for linear classi�ers: high-con�dence
predictions are assigned to points furthest from the decision bound-
ary. Such methods should reduce noise in the pseudo-labels which
should mitigate�or at least delay�the onset of self-poisoning [22].

Recent work by Rizve et al. [45] extend this reasoning and ob-
serve that as many classi�ers are poorly calibrated (i.e., their output
probabilities do not align well with the true probabilities), con�-
dence alone is insu�cient as incorrect predictions may still be made
with high con�dence. To overcome this limitation, the authors pro-
pose selecting pseudo-labels which have high con�dence but also
low prediction uncertainty, as uncertainty can be interpreted as the
quality of the calibration [29].

Rizve et al. [45]do not prescribe a speci�c measure of con�dence
and uncertainty in their work, and the metrics they use are speci�c
to multiclass deep learning classi�ers, however we can adapt the
intuition to the ensemble ofDroidEvolver++ . Note that these mea-
sures are empirical approximations and should not be interpreted
as having strong theoretical guarantees (in contrast to equivalent
notions in Bayesian learning).

Con�dence. As the con�dence measure we use the average JI
score across the non-aging models in the pool. Recall that the JI
score is computed as the proportion of apps in the app bu�er, of the
same class, which have decision scores greater than the given object.
As the decision function for each model in the ensemble is simply
the distance from the hyperplane, and the app bu�er aims to be
representative of the distribution as a whole, we can use JI as a proxy
for distance from the hyperplane and thus con�dence. The reason
we cannot use the decision function outputs directly is because
they are scaled di�erently for each model (Ÿ3), whereas the JI is

	Abstract
	1 Introduction
	2 Drift Adaptation
	2.1 Concept Drift
	2.2 Online Learning for Malware Detection
	2.3 Adaptation Without Labels: DroidEvolver

	3 Identifying Challenges in Pseudo-Label Generation
	3.1 Experimental Setup
	3.2 Assumptions on Data Distribution
	3.3 Weaknesses in Pseudo-Label Generation

	4 DroidEvolver++
	4.1 Tuning Class Ratio of the App Buffer
	4.2 DroidEvolver++ Ablation Study

	5 The Limits of Self-Learning in Malware Detection
	5.1 Uncertainty-Aware Pseudo-Label Selection
	5.2 Tolerance to Pseudo-Label Noise

	6 Discussion
	7 Related Work
	8 Availability
	9 Conclusion
	References
	A Additional Results for Noisy Pseudo-Labels
	B Additional Results with Balanced Class Ratio

