
1

DBank: Predictive Behavioral Analysis of
Recent Android Banking Trojans

Chongyang Bai, Qian Han, Ghita Mezzour, Fabio Pierazzi, and V.S. Subrahmanian

Abstract—Using a novel dataset of Android banking trojans (ABTs), other Android malware, and goodware, we develop the DBank
system to predict whether a given Android APK is a banking trojan or not. We introduce the novel concept of a Triadic Suspicion Graph
(TSG for short) which contains three kinds of nodes: goodware, banking trojans, and API packages. We develop a novel feature space
based on two classes of scores derived from TSGs: suspicion scores (SUS) and suspicion ranks (SR)—the latter yields a family of
features that generalize PageRank. While TSG features (based on SUS/SR scores) provide very high predictive accuracy on their own
in predicting recent (2016-2017) ABTs, we show that the combination of TSG features with previously studied lightweight static and
dynamic features in the literature yields the highest accuracy in distinguishing ABTs from goodware, while preserving the same
accuracy of prior feature combinations in distinguishing ABTs from other Android malware. In particular, DBank’s overall accuracy in
predicting whether an APK is a banking trojan or not is up to 99.9% AUC with 0.3% false positive rate. Moreover, we have already
reported two unlabeled APKs from VirusTotal (which DBank has detected as ABTs) to the Google Android Security Team—in one
case, we discovered it before any of the 63 anti-virus products on VirusTotal did, and in the other case, we beat 62 of 63 anti-viruses on
VirusTotal. This suggests that DBank is capable of making new discoveries in the wild before other established vendors. We also show
that our novel TSG features have some interesting defensive properties as they are robust to knowledge of the training set by an
adversary: even if the adversary uses 90% of our training set and uses the exact TSG features that we use, it is difficult for him to infer
DBank’s predictions on APKs. We additionally identify the features that best separate and characterize ABTs from goodware as well as
from other Android malware. Finally, we develop a detailed data-driven analysis of five major recent ABT families: FakeToken,
Svpeng, Asacub, BankBot, and Marcher, and identify the features that best separate them from goodware and other malware.

Index Terms—Android Banking Trojans, Machine Learning, Graph Models, Malware

F

1 INTRODUCTION

According to Statista [35], Android was the most widely
used smartphone OS in the world with a market share
of 87.9% at the end of the second quarter of 2017. An-
other Statista report [36] shows that Android had more
than 3 times as many vulnerabilities reported in it as the
nearest competing mobile operating system, iOS. Moreover,
a Kaspersky Labs report of April 2018 specifies the exis-
tence of 94,368 mobile banking trojans [32], showing that
ABTs are rapidly and dynamically evolving in their attacks.
These three statistics collectively suggest that the problem
of detecting Android Banking Trojans (ABTs for short) is of
enormous importance.

The main goal of this paper is to address the ABT threat.
We develop a framework called DBank that tackles detec-
tion and characterization of ABTs using multiple features
combinations and ML algorithms. In particular, DBank relies
both on lightweight features1 from the prior literature, and
on a novel feature space (TSG) that we show to have high
accuracy and interesting properties.

• C. Bai, Q.Han and V.S. Subrahmanian are with the Department of
Computer Science and the Institute for Security, Technology, and Society,
Dartmouth College, Hanover, NH 03755, USA. G. Mezzour is with
the Dept. of Computer Science and Logistic and the TICLab, Universite
Internationale de Rabat, Sala El Jadida, Morocco. F. Pierazzi is with King’s
College London and Royal Holloway, University of London, UK.

• Corresponding author: Professor V.S. Subrahmanian.

1. The focus on lightweight features of DBank is to ensure scalable
feature extraction costs, as heavyweight static and dynamic analysis
can take up to 1-2 hours for each Android sample.

Most prior work on Android malware detection consid-
ered generic “malware”, without focusing specifically on
ABTs. Many works on banking trojans focus on the desktop
or Web browser domains [12], [16], [7], which are funda-
mentally different to defend than a mobile environment in
terms of both static [4] and dynamic [38] analysis. There
are some works which do focus specifically on ABTs—
however they either assume post-mortem analysis of sam-
ples already known to be ABTs (e.g., [6], [11]) or conduct
surveys without proposing a detection algorithm (e.g., [15]).
To the best of our knowledge, this paper proposes the first
system for both detection (Section 4) and characterization
of ABTs (Section 6) and analyzes recent ABTs from 2016-
2017 (Section 3). We additionally propose a novel feature-
space (TSG in Section 2) which we show provides both high
detection accuracy (Section 4), as well as some interesting
defensive properties with respect to some adversary attacks
(Section 5).

This paper makes four major contributions. First, given
an Android APK, we automatically predict whether it is a
banking trojan or not. We show that DBank achieves this
with high accuracy, even after removing isomorphic feature
vectors2, with an AUC up to 99.9% and a false positive
rate of 0.3% (without isomorphic samples) to distinguish
ABTs from goodware, and up to 95.3% AUC with FPR 2.7%
to distinguish ABTs from other-malware. DBank achieves
this via the introduction of a novel structure called a Triadic
Suspicion Graph (TSG for short), along with two novel graph
metrics called suspicion scores (SUS) and suspicion ranks
(SR) that are derived from TSGs. Moreover, we present a

2

novel Window-Based TSG Feature Creator. We show that TSG-
based features alone, when used in conjunction with off the
shelf machine learning algorithms, generate high predictive
accuracy — but when used in conjunction with additional
features derived from more traditional static and dynamic
analysis [30], [4], [10], [37], [13] generate even better results.

Second, we show that TSG-based features have some
interesting defensive properties in the presence of adver-
saries who might guess and obtain even a large part of our
training set. In the real world, attackers may subscribe to or
have access to malware datasets (e.g., through VirusTotal).
We show that even if the attackers have access to over
90% of the samples that we use, their classification accuracy
will still be low. This is shown via multiple distance-based
metrics as well as via a detailed Kolmogorov-Smirnov test.
We additionally show that by a judicious choice of our
training set from the set of openly available samples, we
further compromise the ability of an adversary to reverse
engineer our predictors.

Third, we conduct a thorough analysis of the features
that best distinguish Android Banking Trojans (ABTs for
short) from both goodware and other types of malware
(e.g. ransomware, spyware, SMS fraud). In particular, we
show that the following features play an important role: (i)
requesting permissions to receive/modify SMS, read phone
state, and control system alert windows are each highly
indicative of ABTs, (ii) a low frequency of calls to some
particular Android API packages (e.g., android.widget
and android.view), (iii) and possible repacking activities
through read, write and dynamic class load operations.

Fourth, we study 5 of the ABT families that were
most prevalent in 2016 according to Kaspersky Labs [22].
In particular, we consider the following 5 ABT families:
FakeToken, Svpeng, Asacub, BankBot, Marcher. We
describe the features that best distinguish these 5 families
from goodware and from other forms of malware.

The paper is organized as follows. We present our
feature set in Section 2. This section primarily focuses
on the novel concept of a Triadic Suspicion Graph (TSG)
and the new types of metrics derived from it, namely
suspicion scores and suspicion ranks. It also introduces
our Window-based TSG Feature Creator methodology. We
relegate a detailed description of the baseline features used
to Appendix A in Online Supplementary Material because,
although they are of course important, they form a baseline
of lightweight static and dynamic features already studied
in prior literature [30], [4], [10], [37], [13]. We then describe
our Android applications dataset in Section 3, followed by
our experimental results on predictive accuracy in Section 4,
which also describes the key features that distinguish ABTs

2. We say that two APKs (hashes) are isomorphic when they have
identical feature vectors. In such cases, cross validation by splitting
the data may cause both the training and validation sets in a given
cross validation fold to contain the same feature vectors, leading to an
artificial and incorrect increase in all measures of predictive accuracy.
Past efforts in using machine learning in cybersecurity do not say
anything about the occurrence of isomorphic samples. In this paper, we
present results after removing isomorphic samples, though a removable
appendix does present the results on isomorphic samples. Note that an
attacker can easily generate different hashes of the same samples by
first decompiling the APK, then changing only the package names or
file paths in the manifest, and finally repackaging it to generate a new
APK with a different hash.

from both other forms of malware and from goodware.
Section 5 compares the easiness of an attacker to infer
predictions and features vectors under some scenarios. Sec-
tion 6 then studies the 5 most prevalent forms of recent ABTs
and explains how they differ not only from goodware and
other malware, but also from other ABTs. Finally, Section 7
describes prior work on Android Banking Trojans, and
Section 8 concludes our paper.

We conclude by noting that our DBank framework has
already identified previously unknown Android banking
trojans. In particular, we reported two hashes to the Google
Android Security Team, both of which they confirmed.
One was not identified by any of the 63 anti-virus engines
running on VirusTotal at the time we reported it. The other
was identified by one. Both were confirmed by Google,
suggesting that DBank is not only capable of producing
high AUCs and low FPRs in the lab, but is also capable
to discover Android Banking Trojans in the wild.

2 TRIADIC SUSPICION GRAPH (TSG) FEATURES

This section describes a novel concept called a Triadic Suspi-
cion Graph (TSG for short) and then shows how TSGs can be
used to derive a set of novel features.

2.1 Triadic Suspicion Graphs (TSGs)
Given a set B of Android banking trojans (ABTs), a set G
of goodware, and the set A of all available Android API
packages (see the list in [14], level 23), the Triadic Suspicion
Graph associated with B,G denoted TSGB,G is a graph with
three types of vertices: members of G, members of A and
members of B. A triadic suspicion graph TSGB,G contains
the following kinds of edges.

1) There is an edge from an ABT node b to an API
package p if the Android app b calls some method
or class in the Android API package p at least once.

2) There is an edge from a goodware node g to an API
package p if the Android app g calls some method
or class in the Android API package p at least once.

3) There is an edge from an API package p1 to an API
package p2 if there is at least one Android API class
c1 imported in the package p1 and at least one class
c2 in the package p2, such that class c1 imports class
c2.

TSGs will be very important for us because we will derive
a set of features from them for each app, both ABTs and
goodware.3 It is important to note that we do not require
the sets B,G to be fixed. A system security analyst might
use one set of reference ABTs and goodware B1,G1 during
week 1, switch to different reference sets B2,G2 the next
week, and keep making such changes. By doing so, they are
frequently modifying the “defense surface”, making it much
harder for the attacker to assume or guess too much about
the nature of the defense (see Section 5.2 for an evaluation
of impact on performance of this mechanism). Moreover,
we recommend that the sets B,G be kept small, in order to

3. We will apply an analogous logic to create a TSG when comparing
ABTs vs. other-malware by swapping out the goodware nodes in the
above definition with “other malware” nodes.

3

Fig. 1: A Sample Triadic Suspicion Graph (TSG).

make it difficult for the adversary to accurately guess them
(see Section 5). For instance, if there are a total of 20K ABT
samples available in public resources and there are 100K
goodware samples, we might want to select only say 1K
ABT and 1K goodware samples. It would be very hard for
an adversary to guess which samples we picked for training.

Figure 1 shows a sample TSG. The red nodes are ABTs,
the blue nodes represent goodware and the green nodes
represent API packages. As the reader can readily observe,
we see that ABT b2 invokes some methods or class in API
package p4 but no others. On the other hand API package p4
invokes classes in both p3 and p6, so the ABT b2 indirectly
invokes these API packages as well. TSGs are a special class
of graphs because ABT-ABT edges, goodware-goodware
edges, and ABT-goodware edges are not permitted.

We will further allow the edges in any TSG to be
weighted by a weight function ω. Eq. 1 to Eq. 5 show several
weight functions, some of which we discuss below after
introducing some notation. Let f(vi, cj) be the frequency
(number of times) a vertex vi ∈ B ∪ G directly invokes
some class in the API package pj — this can be ascertained
through a straightforward static analysis of vi’s code. We can
then define an indicator variable as follows: I(vi, pj) = 0 if
f(vi, pj) = 0, I(vi, pj) = 1 otherwise.

We now define 5 different weight functions. These rep-
resent a suite of different ways in which the relationship
between an Android app vi and an Android API package
pj are linked. Our goal is not to claim that these weighting
mechanisms capture some ground truth, but that they repre-
sent different plausible ways to capture these relationships,
which in turn will generate features to feed our machine
learning models.

ω1(vi, pj) = f(vi, pj) (1)
ω2(vi, pj) = f(vi, pj)

2 (2)
ω3(vi, pj) = f(vi, pj)

3 (3)

ω4(vi, pj) =
√
f(vi, pj) (4)

ω5(vi, pj) = ln(f(vi, pj) + 1) (5)

For instance, Equations 1, 2 and 3 can be thought of as
suggesting that the relationship between an Android app
and a particular Android API package is the frequency
of calls to the package, the square of the frequency, and
the cube of the frequency. This is because most machine
learning algorithms are very sensitive to the input features

and cannot always draw nonlinear inferences. Equations 4, 5
capture other possible nonlinear relationships. Again, we
emphasize that we are not claiming these relationships exist,
but rather that we would like to provide sufficiently diverse
input features to the machine learning algorithms in DBank
so that highly accurate predictions can be generated.

We use TSGB,G,ω to denote the TSG generated with a set
B of ABTs, a set G of goodware, and a weight function ω.

2.2 Suspicion Scores (SUS) and Suspicion Ranks (SR)
We are now ready to define suspicion scores (SUS) and sus-
picion ranks (SR), which are associated with API packages
in the TSG. They will constitute the basis for our novel TSG-
inspired feature space.

We first present 11 definitions of SUS scores (SR is a page
rank-inspired metric which we later build on top of SUS).
The reason for considering multiple formulations of SUS is
because we do not know a-priori which one is the best, and
we do not want to overfit the model on one particular for-
mulation. Hence, we delegate to Machine Learning the task
of identifying automatically which definitions are the most
important ones. In particular, we consider the following 11
SUS definitions.

sus(pj) =

∑n
i=1 I(bi,pj)

n∑n
i=1 I(bi,pj)

n
+

∑m
i=1 I(gi,pj)

m

(6)

sus(pj) =

∑n
i=1 f(bi,pj)

n∑n
i=1 f(bi,pj)

n
+

∑m
i=1 f(gi,pj)

m

(7)

sus(pj) =

∑n
i=1 f(bi,pj)

2

n∑n
i=1 f(bi,pj)2

n
+

∑m
i=1 f(gi,pj)2

m

(8)

sus(pj) =

∑n
i=1 f(bi,pj)

3

n∑n
i=1 f(bi,pj)3

n
+

∑m
i=1 f(gi,pj)3

m

(9)

sus(pj) =

∑n
i=1

√
f(bi,pj)

n∑n
i=1

√
f(bi,pj)

n
+

∑m
i=1

√
f(gi,pj)

m

(10)

sus(pj) =

∑n
i=1 ln (f(bi,pj)+1)

n∑n
i=1 ln (f(bi,pj)+1)

n
+

∑m
i=1 ln (f(gi,pj)+1)

m

(11)

sus(pj) =

∑n
i=1 f(bi,pj)∑

pj

∑n
i=1 f(bi,pj)∑n

i=1 f(bi,pj)∑
pj

∑n
i=1 f(bi,pj)

+
∑m

i=1 f(gi,pj)∑
pj

∑m
i=1 f(gi,pj)

(12)

sus(pj) =

∑n
i=1 f(bi,pj)

2∑
pj

∑n
i=1 f(bi,pj)2∑n

i=1 f(bi,pj)2∑
pj

∑n
i=1 f(bi,pj)2

+
∑m

i=1 f(gi,pj)2∑
pj

∑m
i=1 f(gi,pj)2

(13)

sus(pj) =

∑n
i=1 f(bi,pj)

3∑
pj

∑n
i=1 f(bi,pj)3∑n

i=1 f(bi,pj)3∑
pj

∑n
i=1 f(bi,pj)3

+
∑m

i=1 f(gi,pj)3∑
pj

∑m
i=1 f(gi,pj)3

(14)

sus(pj) =

∑n
i=1

√
f(bi,pj)∑

pj

∑n
i=1

√
f(bi,pj)∑n

i=1

√
f(bi,pj)∑

pj

∑n
i=1

√
f(bi,pj)

+
∑m

i=1

√
f(gi,pj)∑

pj

∑m
i=1

√
f(gi,pj)

(15)

4

sus(pj) =

∑n
i=1 ln (f(bi,pj)+1)∑

pj

∑n
i=1 ln (f(bi,pj)+1)∑n

i=1 ln (f(bi,pj)+1)∑
pj

∑n
i=1 ln (f(bi,pj)+1)

+
∑m

i=1 ln (f(gi,pj)+1)∑
pj

∑m
i=1 ln (f(gi,pj)+1)

(16)

We discuss only a couple of them below. Let us start
with Equation 6, the first suspicion scoring method. The
equation says that the suspicion score of an API package
p is the percentage of ABTs in B that invoke it, divided
by the sum of the percentage of ABTs in B that invoke it
and the percentage of goodware in G that invoke it. On the
other hand, Equation 7 says that the suspicion score of an
API package p is the average number of times it is called by
ABTs in B divided by the sum of the averages of the number
of times is is called by ABTs in B and goodware in G.

We now adapt the definition of PageRank [29]4 to define
the suspicion rank SR(p) of an Android API package pw.r.t.
a suspicion scoring function sus as:

SRsus(p) =
1− δ
|A|

+ δ · Σp′∈A,(p′,p)∈E
sus(p′) · SRsus(p

′)

out(p′)
(17)

where out(p′) is the out-degree (number of outgoing edges)
of vertex p′ in TSGB,G,ω and δ ∈ [0, 1] is a damping factor.
As is usually done with PageRank [29], we set δ = 0.85. It is
important to note that unlike PageRank, suspicion rank SR
is not one function, but a family of 55 functions depending
upon the choice of the underlying suspicion score function
(one of 11 functions) and the way in which the graph is
weighted (one of 5 ways). Moreover, it varies based on the
choice of B,G made by the defender which, as we have
mentioned previously, should be re-vamped frequently.

Package Call Graph. The Android Package Call Graph
(PCG for short) is the graph whose nodes are Android API
package names and whose edges are defined as above: there
is an edge from package p1 to package p2 if there is a class
in p1 which calls a class in p2. Note that the PCG is solely
dependent on the Android API [14] and is not dependent
on our choice of B,G. Thus PCG is a subgraph of every
Triadic Suspicion Graph and cannot be manipulated by the
adversary because it is derived directly from the Android
API, not from any specific Android app.

Prior work on related to function call graphs (e.g., de-
pendency graphs [43] control-flow graphs [5], [27], code
property graphs [40]) usually relies on abstractions of se-
quences of operations of specific samples. In contrast, in our
TSG, the PCG is based solely on the Android OS framework
dependencies, and each node of the PCG (i.e., package) is
then connected to the benign and malicious applications
that call it depending on APIs within their programs. In
other words, while prior work computes per-app API call
graphs and then creates a model or looks for similarities

4. PageRank is a mechanism to capture the importance of webpages
using the formula PR(v) = 1−d

N
+ d×Σ(u,v)∈E

PR(u)
out(u)

where E is the
set of edges in the web, N is the total number of nodes in the web,
d ∈ [0, 1] is called the “damping factor”, and out(u) is the out-degree
of node u. The 1−d

N
expression captures the probability that a user will

reach webpage v directly (e.g. by typing it in explicitly into a browser)
while the d× Σ(u,v)∈E

PR(u)
out(u)

is intended to capture the probability of
a user reaching page v by following links.

between different graphs, we instead create a single large
TSG graph from our dataset (Figure 1), where API package
edges are dependent solely on the Android framework; the
SUS and SR scores are then extracted from this global TSG
graph that includes also the goodware and ABT edges,
and are the basis to derive TSG features. Moreover, our
recommendation is to make the dataset not too large so that
the adversary has difficulty identifying what we are using
and that it be changed frequently, so that a “moving target”
defense [19] is established.

2.3 Window-Based TSG Feature Creator
Clearly, the notions of SUS and SR give us a total of
11 + 11 = 22 suspicion-based scores associated with any
API package times 5 weight functions for a total of 110
possibilities. However, we need to take these scores asso-
ciated with API packages and, instead, associate them with
Android applications. We do this as follows.

For any of the possible suspicion scores and suspicion
rank functions ρ, we can order all the API packages in A
in descending order of the score returned by ρ. We may
be tempted to think that the first API package in this de-
scending list is the most suspicious. However, our suspicion
scores and suspicion ranks are possibly noisy. We therefore
arrange the sorted list of API packages in A into buckets
consisting of the first W API packages, the second W API
packages, the third W API packages and so forth as shown
in Figure 2. We call W the window size.

Fig. 2: Window-based API package ranking by descending
SUS/SR scores.

Each of the suspicion-based features sf for a given API
package call ends up in one of these buckets. The idea
is that different API packages in the same bucket have
similar values and ranks in the sorted list according to ρ.
We therefore try to associate with an Android APK sample
s, aggregate features associated with the API packages in the
first bucket, the second bucket, and so forth. If API packages
p1, . . . , pW are in a bucket, then the value of suspicion-based
features sf for sample s can be calculated via one of the
following 6 methods:

1) (Binary Value) Does sample APK s call a class in at
least one of p1, . . . , pW ? This is a binary feature: 0 if
no, 1 if yes.

2) (Num Packages) What is the total number of API
packages p1, . . . , pW , whose classes were called by
s?

3) (FreqSum) What is the sum of the frequencies of
calls made by s to classes in the API packages
p1, . . . , pW ?

4) (Max, Median) What is the max (and median) of the
frequencies of calls made by s to classes in the API
packages p1, . . . , pW ?

5

5) (WtSum) What is the weighted sum of the frequen-
cies of calls made by s to classes in the API packages
p1, . . . , pW where the weight used is the sus score
of each API package.

In the remainder of this paper, we refer to these features as
TSG features.

To illustrate how this works, consider the small dataset
with 3 ABTs and 3 goodware samples in Figure 1. Suppose
the table below shows the frequency with which the ABT
sample b1 calls the 6 API packages shown in Figure 1.

p1 p2 p3 p4 p5 p6
Freq. 0 0 0 2 4 3

Suppose we use Equation 6 as our suspicion scoring
method. In this case, the suspicion scores (after sorting in
descending order) are given by the table:

p5 p6 p4 p1 p2 p3
SUS 1 1 0.5 0 0 0

Suppose we now use W = 3 as the window size. In this
case, there are two buckets — the first bucket has p5, p6, p4
in it and the second has p1, p2, p3 in it. So the feature values
for ABT b1 obtained from the first bucket are: Binary Value
= 1, NumClasses = 3, FreqSum = 9, Max = 4, Median = 3,
and WtSum = 1×4+1×3+0.5×2 = 8. The values of these
features generated by the second bucket are all 0. Of course,
this is a toy example with just 3 API packages and where
we consider just 6 packages in the Android API instead of
all 171.

Now suppose we repeat this process with Equation 6
and Equation 17. In this case, our table of suspicion ranks
after sorting:

p5 p3 p6 p1 p2 p4
SR 0.06 0.04 0.04 0.03 0.03 0.03

So the feature values for ABT b1 obtained from the first
bucket are: Binary Value = 1, NumClasses = 2, FreqSum
= 4+0+3 = 7, Max = 4, Median = 3, and WtSum = 0.06×
4+0.04×0+0.04×3 = 0.36. Of the API calls in the second
bucket, b1 only calls p4 and hence its corresponding feature
values are 1, 1, 2, 2, 0 and 0.03× 2 = 0.06, respectively.

The above discussion shows how part of the feature
vector for sample b1 is created. In total, we therefore have 22
suspicion scores and ranks and 6 TSG feature computations
for each window of size W , leading to a total of 132 features
for each window. Of a total of 171 API packages in all, this
means that we will have a total of 132 × b 171W c features
in all for any given APK sample s. When W = 5, for
instance, we have a total of 3, 960 features associated with
any Android APK sample. (We experiment with different
values of window size). These are the features that we will
work with when making predictions.

Other Features. In addition to the TSG features (3,960
in all), we also used 130 features from the Android Man-
ifest, 171 features for API Package, 3,459 features for API
Class, and approximately 40,000 features from dynamic
analysis of the code. Dynamic analysis was achieved by
using the Koodous online service [1]. We do not describe
the lightweight static and dynamic analysis features here,
as they are reimplemented from related works [10], [37],
[4]. We report more details on them in Appendix A (Online
Supplementary Material).

TABLE 1: Dataset Composition

Goodware ABT Other Malware
Raw dataset 3,535 7,107 4,478
No-Isomorphic 2,998 1,061 1,056

TABLE 2: Classification Results (in %) on Different Group
Width (W) using TSG features.

Dataset W F1 Prec. Rec. AUC FPR FNR
ABT vs. Goodware 5 94.1 96.3 91.9 98.9 1.2 8.1
ABT vs. Goodware 10 93.9 96.1 91.7 98.6 1.3 8.3
ABT vs. Goodware 15 93.0 96.1 90.2 98.5 1.3 9.8
ABT vs. Goodware 20 93.1 95.5 90.8 98.5 1.5 9.2

ABT vs. Other-malware 5 85.2 87.6 82.9 92.4 11.8 17.1
ABT vs. Other-malware 10 85.1 87.2 83.1 92.3 12.3 16.9
ABT vs. Other-malware 15 84.9 87.1 82.8 91.7 12.3 17.2
ABT vs. Other-malware 20 84.4 85.9 82.9 91.6 13.6 17.1

3 THE DBANK DATASET

In this section, we briefly review the recent dataset used
to evaluate the DBank system. We create our dataset by
downloading Android APKs from VirusTotal during the
2016-2017 time period that were classified as ABTs by at
least 5 antivirus tools. We did the same with goodware
(0 detections) and with other types of Android malware
(Android malware not identified as ABT, and with at least 5
antivirus detections).

Table 1 summarizes the composition of the dataset. The
raw dataset row in this table shows the number of samples
in each category that were downloaded and successfully
dynamically executed on Koodous [1]. However, it is pos-
sible that two samples with different file hashes have the
same feature vectors. In this case, we say that these two
samples are isomorphic. Training/testing on the raw dataset
would run the risk of artificially inflating prediction qual-
ity because a sample might be in the training set, while
an isomorphic copy could also be in the test set. In this
case, the problem of labeling the test example would be
unrealistically trivial, leading to an unjustifiable increase in
prediction performance. In order to avoid this, we build
a No-Isomorphic dataset which retained only one copy of
samples that had the same feature vectors.

In the remainder of the paper, we report the No-
Isomorphic results as they represent a worst-case scenario
for our classifier; for the sake of completeness, we also
include the isomorphic results in Appendix C.

4 PREDICTIVE ACCURACY RESULTS

We are now ready to describe the experiments we conducted
to evaluate the performance of DBank using different combi-
nations of our novel TSG (Section 2) and traditional features.
We followed the usual 10-fold cross validation protocol. In
each fold, we split our data into a training set TR and a
test set TS. The training set itself was split into a partial
training set PTR and a validation set PV S. The goal was to
optimize parameters using the training set alone (i.e. using
PTR to train and PV S to validate) and then predict on the
hold-out (blind) test set.

This section reports only non-isomorphic results (which
represent a worst-case scenario for our DBank system). Re-
sults with isomorphic features are reported in Appendix C.

6

TABLE 3: AUC (%) and FPR (%) on ABT vs. Goodware with no isomorphic samples, divided into three groups. Cells with
gray background highlight the best AUC in the group. We report results for the following features (and combinations of
them): TSG, Manifest (M), Dynamic (D), API package (AP), and API class (AC).

KNN LR DT NB RF GBDT MLP SVM

Features AUC FPR AUC FPR AUC FPR AUC FPR AUC FPR AUC FPR AUC FPR AUC FPR

IN
D

IV
ID

U
A

L M (Manifest) 90.3 9.0 97.4 1.7 94.1 3.2 95.2 4.4 98.3 0.5 95.2 2.7 50.0 40.0 57.5 60.5
AP (API Package) 94.9 6.2 96.4 9.8 94.4 3.4 91.8 12.1 98.8 1.0 97.0 3.0 84.2 14.3 83.0 13.8
AC (API Class) 94.5 4.8 96.3 4.4 93.1 3.3 89.9 13.6 98.7 0.7 96.7 2.9 96.8 3.1 91.2 1.1
D (Dynamic) 80.4 36.9 90.6 0.9 85.8 14.3 87.3 54.7 92.5 23.6 91.5 18.7 92.1 16.3 91.2 14.7
TSG (Ours) 94.9 6.4 96.9 3.5 93.3 2.8 89.4 10.0 98.8 0.7 97.6 2.6 50.4 78.0 77.4 29.3

C
O

M
BI

N
ED

M+D 90.3 9.0 97.5 1.4 95.3 1.5 96.3 5.1 98.3 0.2 97.3 1.3 50.0 50.0 63.0 72.4
AP+M 91.3 8.0 98.8 1.6 96.9 1.3 96.2 5.7 99.8 0.3 99.4 0.5 49.9 60.0 67.4 63.5
AP+D 94.9 6.0 97.5 3.8 93.8 2.3 93.8 9.6 98.9 1.4 98.0 2.7 96.6 3.3 77.7 12.0
AC+M 88.6 4.9 97.8 2.3 97.3 1.5 90.5 13.1 99.8 4.0 99.8 5.0 49.9 50.0 66.9 32.1
AC+D 94.7 4.5 97.6 3.3 93.7 2.0 90.4 13.1 98.8 4.0 97.6 1.4 96.1 2.5 94.4 6.1
AC+AP 94.1 4.7 96.4 4.4 93.4 2.8 89.9 13.6 98.7 0.4 97.3 2.0 92.7 5.6 87.3 12.3
AP+M+D 90.8 8.1 97.8 2.0 95.4 1.8 96.6 6.1 99.1 0.3 98.2 1.6 50.0 70.0 51.8 62.3
AC+M+D 88.6 4.9 97.8 2.2 97.1 1.3 91.0 12.5 99.7 0.2 99.7 0.5 50.1 40.0 60.6 42.5
AC+M+AP 89.5 4.9 98.2 2.0 96.9 1.7 90.4 13.1 99.8 0.3 99.6 0.7 50.0 60.0 62.0 39.5
AC+AP+D 94.2 4.6 97.6 3.5 93.6 2.4 90.4 12.9 98.9 0.4 97.3 1.5 89.8 3.7 94.1 4.4
AP+AC+M+D 89.5 4.9 98.0 2.0 97.1 1.3 90.8 12.5 99.7 0.3 99.7 0.5 50.0 50.0 50.4 58.4

C
O

M
BI

N
ED

(W
IT

H
TS

G
)

TSG+AP 94.9 6.4 97.0 3.6 93.4 2.8 89.3 10.1 98.8 0.7 97.3 2.6 57.8 78.0 83.2 29.3
TSG+M 94.4 7.9 98.6 0.9 96.7 1.6 89.6 9.7 99.8 0.4 99.6 0.4 49.5 80.0 52.1 67.9
TSG+D 94.9 6.4 94.2 2.2 93.7 2.1 89.4 9.8 99.0 0.7 97.9 2.4 61.2 81.0 69.4 16.3
TSG+AC 83.2 8.0 96.2 5.6 92.8 3.4 84.0 22.5 98.3 2.5 96.6 2.8 49.9 0.1 83.1 17.6
TSG+M+D 94.4 7.6 98.5 0.8 97.4 1.2 89.7 7.8 99.7 0.8 99.5 1.1 50.0 70.0 48.8 46.4
TSG+AP+M 94.5 7.6 98.9 1.1 97.1 1.4 91.9 8.3 99.8 0.4 99.5 0.5 50.0 80.0 57.8 67.0
TSG+AP+D 94.5 6.4 98.2 2.3 93.7 2.3 91.7 8.6 98.8 1.3 98.2 2.6 52.6 70.1 82.3 35.4
TSG+AC+M 88.5 4.9 97.8 2.3 97.3 1.5 90.5 13.1 99.8 0.4 99.8 0.5 66.9 32.1 74.7 37.2
TSG+AC+D 94.1 4.7 93.2 5.5 93.2 4.3 88.2 4.5 98.7 2.1 96.0 4.5 54.9 66.8 82.5 21.4
TSG+AC+AP 94.2 4.5 97.3 3.5 93.2 2.9 89.6 14.1 99.1 2.0 98.4 2.2 52.3 50.0 94.8 5.6
TSG+AP+M+D 94.5 7.8 98.3 0.9 97.6 1.0 89.9 9.7 99.9 0.3 99.6 0.6 49.8 70.0 64.5 48.9
TSG+AC+M+D 92.7 3.2 98.7 2.3 97.0 1.2 90.0 14.0 99.5 1.5 99.8 0.5 50.1 80.0 81.1 19.1
TSG+AC+M+AP 92.8 3.1 98.7 2.1 97.0 1.3 89.7 14.0 99.7 1.1 99.8 0.5 50.2 40.4 80.7 18.5
TSG+AC+AP+D 94.2 4.5 98.2 3.0 92.8 2.4 89.7 13.8 99.0 2.3 98.9 2.1 58.4 67.2 81.9 18.1
TSG+AP+AC+M+D 92.8 3.1 98.6 2.3 97.4 1.1 89.9 13.8 99.6 1.4 99.8 0.4 50.0 70.0 68.8 36.7

4.1 Identifying the best W
In order to identify the best possible value of window-size
W to build the feature vectors based on TSG (Section 2.3),
we tested on PTR with different values of W and validated
on PV S. Table 2 shows the results how changing the values
of W affects the F1-Score, AUC, Precision, and Recall using
the Random Forest classifier both to distinguish ABTs from
Goodware and in distinguishing ABTs from Other Malware.
While the differences in F1-Score and AUC (the two mea-
sures that best capture classifier performance) are not huge,
we see that in W=5 generally performs best. Hence, in the
remainder of the experiments, we use W=5 as the window
size.

4.2 ABT vs. Goodware
In order to evaluate DBank performance in distinguish-
ing between ABTs and goodware, we tested a suite of 8
classifiers: k-Nearest Neighbor (KNN), Logistic Regression
(LR), Decision Tree (DT), Naive Bayes (NB), Random Forest
(RF), Gradient Boosting Decision Tree (GBDT), Multi-Layer
Perceptrons (MLP) and Support Vector Machines (SVM).
We also varied the set of features provided as input to the
classifiers in order to understand the impact of different
feature sets on performance. In particular, we examine the
following feature sets: DBank’s Triadic Suspicion Graph-
based features (TSG, for short—our proposed feature set
described in Section 2), Manifest, API package call, API
class call, and Dynamic (more details in Appendix A). We
consider performance for each of these feature sets alone, as
well as combinations of them.

Table 3 shows the AUC and FPR of using different classi-
fiers and feature space combinations. The table considers the
“No-Isomorphic” scenarios (Section 3), where feature vec-
tors are unique. We see that RF generates the best resulting
irrespective of the feature types used, yielding up to 0.999
AUC and 0.003 FPR. In particular, when individual features
are considered, our TSG performs best along API Package
features. The best performance of 99.9% AUC is achieved
when a combination of different features (including TSG) is
used.

4.3 ABT vs. Other Malware

We now compare the same 8 classifiers with different feature
combinations to predict whether a malicious object belongs
to either the banking trojan class (i.e., ABT) or is in the
“other-malware” type category. The resulting AUCs and
FPRs are shown in Table 4. Again, we see that DBank with
Decision Tree-based classifiers (RF without TSG features,
and GBDT with TSG features) generate the best results with
an AUC of 95.3% and an FPR between 2.7% and 3.4%. When
considering individual features the Manifest performs best
(94.1% AUC), whereas our TSG features perform slightly
lower (92% AUC). Despite this slightly lower performance
of TSG in this setting, we later show that TSG features have
some interesting defensive properties that make it harder
for the attacker to guess the defender’s predictions (see
Section 5).

Moreover, we observe that ABT vs. other-malware per-
formance is slightly lower than what we saw when dis-
tinguishing ABTs from goodware, and reflects the fact that

7

TABLE 4: AUC (%) and FPR (%) on ABT vs. Other-malware with no isomorphic samples, divided into three groups. Cells
with gray background highlight the best AUC in the group. We report results for the following features (and combinations
of them): TSG, Manifest (M), Dynamic (D), API package (AP), and API class (AC).

KNN LR DT NB RF GBDT MLP SVM

Features AUC FPR AUC FPR AUC FPR AUC FPR AUC FPR AUC FPR AUC FPR AUC FPR

IN
D

IV
ID

U
A

L M (Manifest) 62.8 26.1 88.8 13.7 82.9 6.0 83.5 14.2 94.1 4.6 90.8 6.8 50.0 50.0 48.6 57.7
AP (API Package) 84.3 25.5 80.2 20.7 82.0 18.1 76.8 29.4 92.5 11.0 90.7 15.6 67.1 29.5 58.4 20.5
AC (API Class) 83.0 7.8 81.9 11.9 80.8 7.1 77.9 20.2 91.7 5.9 89.5 7.7 80.1 23.5 71.3 18.0
D (Dynamic) 72.9 5.8 81.0 24.8 76.7 19.8 82.8 15.3 83.4 22.0 82.0 22.6 83.3 20.5 84.1 24.1
TSG (Ours) 84.1 8.6 85.3 8.7 80.6 7.6 75.7 25.4 92.0 6.1 89.4 7.5 54.9 65.9 63.8 20.4

C
O

M
BI

N
ED

M+D 62.7 25.8 90.0 9.8 84.6 5.9 88.3 13.1 94.2 5.1 90.1 7.9 49.7 60.0 49.2 19.9
AP+M 62.4 24.1 89.4 7.6 82.0 5.5 88.3 10.6 95.3 2.7 95.3 2.8 50.0 69.9 54.1 57.9
AP+D 83.8 6.9 85.1 6.7 81.8 4.8 87.0 8.6 93.3 3.4 91.3 6.3 77.6 16.6 69.2 21.6
AC+M 61.0 33.7 85.5 18.4 80.3 17.3 82.3 20.6 94.4 7.8 92.5 10.5 50.0 60.0 53.1 43.8
AC+D 83.7 18.9 84.1 18.3 81.4 15.7 81.4 15.0 92.2 9.6 90.0 11.8 82.6 12.7 73.9 32.5
AC+AP 83.9 19.0 83.2 20.4 81.1 16.8 77.3 25.5 91.7 10.2 90.4 13.1 75.5 30.7 65.2 27.4
AP+M+D 63.5 21.1 88.0 9.1 84.3 5.3 89.6 10.5 94.2 4.2 92.0 6.8 49.9 40.0 49.1 31.4
AC+M+D 60.9 33.8 83.9 19.1 81.2 16.8 85.1 12.8 94.3 7.6 93.1 10.4 50.0 69.9 55.0 34.9
AC+M+AP 61.7 34.0 84.6 18.7 81.0 17.4 81.6 21.2 94.5 8.2 93.3 10.6 50.1 40.0 55.2 29.1
AC+AP+D 83.6 18.2 84.1 18.0 81.5 16.4 80.9 16.4 92.3 9.2 90.8 13.2 81.1 13.7 70.5 24.3
AP+AC+M+D 61.6 34.0 84.4 17.7 82.2 16.6 84.4 13.6 94.1 8.2 93.7 10.8 49.8 40.1 54.3 51.2

C
O

M
BI

N
ED

(W
IT

H
TS

G
)

TSG+AP 84.4 9.3 85.7 9.0 80.6 7.7 69.7 25.5 92.5 6.0 89.9 7.5 50.5 75.5 63.5 15.5
TSG+M 64.9 21.4 90.7 4.6 82.6 5.7 76.6 24.8 94.1 2.9 94.8 2.8 50.0 30.0 54.0 24.1
TSG+D 83.6 7.2 87.7 5.7 82.4 5.6 76.5 24.7 92.3 4.1 92.0 6.1 54.3 73.2 66.6 17.3
TSG+AC 73.3 29.0 79.4 22.4 77.4 20.4 69.1 32.0 88.6 17.8 92.9 12.3 50.7 20.0 68.0 26.0
TSG+M+D 64.9 21.4 90.7 4.4 82.8 5.4 74.4 24.3 94.0 3.2 94.6 2.7 49.9 80.0 53.7 53.8
TSG+AP+M 65.0 21.4 90.2 4.6 81.1 5.9 76.6 24.3 94.3 3.2 94.6 2.7 50.0 80.0 50.8 53.8
TSG+AP+D 83.7 7.2 87.2 5.7 82.8 5.2 76.6 24.3 92.2 4.1 91.5 6.1 51.8 71.6 61.5 15.5
TSG+AC+M 63.5 31.8 82.2 20.2 78.9 19.1 70.9 30.6 91.4 14.2 94.3 9.8 50.0 29.9 56.4 31.0
TSG+AC+D 71.3 27.5 81.9 21.3 79.5 18.8 70.8 29.2 87.7 18.9 92.4 11.5 51.5 2.6 67.3 35.8
TSG+AC+AP 75.1 24.2 80.2 24.0 79.2 19.2 69.9 34.7 90.8 9.5 92.1 12.5 50.9 0.1 69.2 30.2
TSG+AP+M+D 65.2 20.6 58.2 4.7 84.2 4.8 77.8 23.6 94.3 2.9 95.3 3.4 50.0 50.0 53.6 16.2
TSG+AC+M+D 63.8 31.8 83.4 20.4 79.6 19.5 72.0 29.4 90.2 16.1 93.4 11.3 49.8 49.8 57.0 39.4
TSG+AC+M+AP 64.0 32.4 82.7 20.8 79.8 18.5 71.4 30.4 92.4 12.2 94.6 10.3 49.9 30.1 53.5 43.0
TSG+AC+AP+D 72.3 24.9 81.7 21.6 79.1 19.2 71.5 28.8 88.1 17.7 92.4 11.5 50.9 1.0 65.3 35.6
TSG+AP+AC+M+D 64.0 32.4 83.6 20.5 80.9 17.2 72.6 28.6 91.1 13.4 94.2 9.3 49.9 30.1 53.4 50.2

ABTs have more in common with other malware than they
have with goodware. This is not surprising. We know that
some ABTs also have a spyware component. For instance,
the well-known Asacub ABT also acts as a form of spy-
ware.5.

4.4 Random Forest Classifier Performance
We observe that the Random Forest (RF) classifier is the best
classifier at distinguishing between both ABT vs. goodware
and ABT vs. other malware. In both cases, we used RF
trained on decision trees. The intuitive reason for this is
that the RF algorithm selects many different subsets of
the training data. For each subset of the training data, it
trains a different decision tree classifier. When testing, each of
the many different trained decision tree classifiers makes
a prediction about any given binary (e.g. is it an ABT
or goodware; is it an ABT or other malware) and then a
majority vote is taken in RF to decide the final classification
of the binary. Because RF looks at many different subsets
of the training data, it avoids potential overfitting because
of peculiarities of the training data. It is therefore also not
surprising that it beats out the decision tree classifier that
trains just once on the entire training data.

4.5 Identifying Key Features
As mentioned in the preceding subsections, Decision Tree
(DT) and Random Forest (RF) are the best classifiers for

5. A Kaspersky report from April 2018 [33] states that: “We encoun-
tered the Trojan-Banker.AndroidOS.Asacub family for the first time in
2015, when the first versions of the malware were detected, analyzed,
and found to be more adept at spying than stealing funds.”

predicting both ABTs vs. goodware and ABTs vs. other
malware. The most important features of RF are determined
through the average value of Mean Decreased Impurity (MDI)
of its underlying decision trees. In particular, MDI is a
standard method that progressively splits the data in two
sets based on rules on individual feature values, in order
to create good separations of the classes. The optimal split
is identified according to the information gain concept of
Gini impurity. Given a node N in a decision tree, some
set Sat(N) of the samples in the training set satisfy the
conditions required to reach node N in the tree. The Gini
score Gini(N) = 1 − ΣclasscP(c|N)2 where P(c|N) is the
probability of a sample in Sat(N) belonging to class c. A
low Gini score (close to 0) means a low impurity. As we
split nodes in a decision tree, the idea is to decrease the Gini
score of the child nodes as compared to the parent, giving
rise to the notion of mean decreased impurity (i.e. mean of
decrease in Gini score). At the end of the training phase,
each decision tree of the RF algorithm will have a certain
MDI value for each feature, according to how relevant that
feature to differentiate between the two classes; the average
MDI of a feature across all the decision trees represents the
importance value of that feature in the RF algorithm.

4.6 Key Features Distinguishing ABTs from Goodware

We also investigated the key features that distinguish ABTs
from goodware in the “No-Isomorphic” case. Figure 3
shows 10 of the top 25 features that distinguish ABTs
from goodware. (For space reasons, the top-25 feature his-
tograms are reported in Appendix D). Each histogram cor-

8

0.0 0.2 0.4 0.6 0.8 1.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

permission:RECEIVE_SMS

ABT
Goodware

(a) RECEIVE SMS

0 2000 4000 6000 800010000
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

android.view

ABT
Goodware

(b) android.view

0.0 0.5 1.0
Feature value 1e8

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

filesize

ABT
Goodware

(c) filesize

0 5000 10000 15000 20000
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

android.widget

ABT
Goodware

(d) android.widget

0 20 40 60 80 100
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

num_std_permissions

ABT
Goodware

(e) num std permissions

0.0 0.2 0.4 0.6 0.8 1.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

permission:READ_PHONE_STATE

ABT
Goodware

(f) READ PHONE STATE

0 250 500 750 1000 1250
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

android.net

ABT
Goodware

(g) android.net

0.0 0.2 0.4 0.6 0.8 1.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

permission:SYSTEM_ALERT_WINDOW

ABT
Goodware

(h) SYSTEM ALERT WINDOW

0 10 20 30 40 50
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

android.app.admin

ABT
Goodware

(i) android.app.admin

0.0 0.2 0.4 0.6 0.8 1.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

permission:MOUNT_UNMOUNT_FILESYSTE
MS

ABT
Goodware

(j) (UN)MOUNT FILESYSTEM

Fig. 3: ABT vs Goodware: Histograms of distinguishing features values.

0.0 0.2 0.4 0.6 0.8 1.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

permission:READ_SMS

ABT
Other-malware

(a) READ SMS

0 50 100 150
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

android.app.admin

ABT
Other-malware

(b) android.app.admin

0.0 0.2 0.4 0.6 0.8 1.0
Feature value 1e8

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

filesize

ABT
Other-malware

(c) filesize

0 10 20
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

dalvik.system

ABT
Other-malware

(d) dalvik.system

0.0 0.2 0.4 0.6 0.8 1.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

permission:GET_TASKS

ABT
Other-malware

(e) GET TASKS

0 2000 4000 6000 8000 10000
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

java.io

ABT
Other-malware

(f) java.io

0 2000 4000 6000 8000
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

android.view

ABT
Other-malware

(g) android.view

0 500 1000 1500
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

android.app

ABT
Other-malware

(h) android.app

0 20 40 60
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

num_receivers

ABT
Other-malware

(i) num receivers

0.0 0.2 0.4 0.6 0.8 1.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

permission:CALL_PHONE

ABT
Other-malware

(j) CALL PHONE

Fig. 4: ABT vs Other-malware: Histograms of distinguishing features values.

responds to a specific feature (e.g., number of calls to the
android.view package); the X-axis reports the feature
values, whereas the Y -axis reports the percentage of ABT
(resp. goodware) that have a certain feature value. For
example, Figure 3 shows that having the RECEIVE_SMS,
READ_PHONE_STATE and SYSTEM_ALERT_WINDOW per-
mission are some of the most important features distin-
guishing ABTs from goodware, because ABTs are far more
likely to have this permission than goodware. Likewise,
Android apps that do not invoke any methods in the API
package android.widget and/or android.view are far
more likely to be ABTs than goodware.

4.7 Key Features Distinguishing ABTs from Malware

We also investigate the key features that distinguish ABTs
from other malware in the “No-Isomorphic” case. Figure 4

shows 10 of the 25 top features that distinguish ABTs from
other malware. (The full set of histograms is reported in
Appendix D within Online Supplementary Material). We
see from Figure 4 that the READ_SMS, GET_TASKS and
CALL_PHONE permissions are very effective in distinguish-
ing ABTs from other malware, since ABTs are far more
likely to have these permissions than other-malware. These
permissions are likely used by ABTs to prevent and stop
any call and alert SMS from a bank notifying unusual
account activity. On the other hand, the other most im-
portant features have distributions that make using them
individually for predicting whether an APK is an ABT or
another malware type much more challenging. This again
is not surprising as functionalities and behaviors of ABTs
are harder to distinguish from other malware than from
goodware. We emphasize that it is the combination of these
features that enables us to make good predictions, and that

9

Fig. 5: Top 25 features including Suspicion Scores and Ranks.

these features by themselves do not do that.

4.8 Best Suspicion Scoring Methods
We also studied which suspicion scoring methods were
most effective in separating ABTs from goodware. As we
can see from Figure 5, 10 of the 25 most significant fea-
tures involved in separating ABTs from goodware are re-
lated to suspicion scores. In particular, we see that Equa-
tions 6, 7 and 11 are the most important TSG-related
features. We see immediately from Figure 5 that when the
suspicion score captured by Equation 6 is close to 1 for
a given binary, the probability of the binary being mal-
ware is very high. This particular suspicion scoring method
captures the probability that an ABT is calling at least
one of android.app.admin, javax.security.auth.callback, an-
droid.os.storage, android.app.job, android.system and an-
droid.app.usage in the 1st bucket. Likewise, we see that the
tenth most important feature in separating ABTs from good-
ware corresponds to the number of called API packages
in the 1st bucket: android.provider, java.security.cert, an-
droid.view, android.graphics, and java.nio.channels, which
is ordered by Suspicion Rank computed from Equations 17
and 8.

5 ROBUSTNESS TO SOME ADVERSARY ATTACKS

In this section, we study the robustness of our novel TSG
features against an adversary who uses machine learning
using publicly available training data. Because resources
such as VirusTotal are available to many people (including
malicious attackers), and because large criminal networks
have no trouble in gaining access to existing malware, they
have access to huge numbers of Android samples. Suppose
S is the set of all apps available to the defender which he got
through some public services (e.g., VirusTotal). In particular,
S ⊇ {B ∪ G}, where B is the set of ABTs and G is the set
of goodware used by the defender for training.

We study two questions in this section:

1) Suppose the attacker trains on a set that intersects
part of B ∪ G. How well would he infer the pre-
dictions of the defender model to craft an attack,
depending on the size of this intersection? How
different would the attacker feature space be?

2) How much of S do we need to use in a training
set B ∪ G in order to ensure that we achieve and
maintain high detection accuracy, while deceiving
an adversary who is potentially using other subsets
of S?

The next two subsections determine the answers to these
two questions.

5.1 Robustness based on Intersection of Defender and
Adversary Training Data
We study the first question by varying the size of the
intersection ∆ ∈ {10%, 20%, . . . , 90%} of the training set
used by the attacker with the training set B ∪ G used by
the defender. We call ∆ the overlap ratio, which represents
the percentage of data shared by both the attacker and
the defender used to train their models. We define the
adversary’s error rate as the percentage of attacker predictions
disagreeing with the defender model (e.g., the defender
predicts a sample as ABT whereas the adversary predicts
it as goodware).

We randomly select 50 subsets of samples for the adver-
sary with similar distributions as B ∪ G, and measure the
ratio of the adversary’s error rate, normalized by dividing it
by the error rate of the baseline (consisting of static features
from the APK’s Manifest and the Dynamic features) as the
overlap ratio is varied (X-axis). The result is shown in
Figure 6: both when predicting ABTs vs. goodware, as well
as predicting ABTs vs. other malware. In both cases, we
see that even if the adversary knows 80% of the set B ∪ G
used by us, it is still the case that the error rate generated

10

0.0 0.2 0.4 0.6 0.8 1.0
delta

0

1

2

3

4

Ad
ve

rs
ar

y
er

ro
r r

at
e

di
vi

de
d

by
 M

an
ife

st
+D

yn
am

ic
Goodware vs. ABT

API package
Manifest
Dynamic
Manifest+Dynamic
TSG
API class

(a) Goodware vs ABT

0.0 0.2 0.4 0.6 0.8 1.0
delta

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ad
ve

rs
ar

y
er

ro
r r

at
e

di
vi

de
d

by
 M

an
ife

st
+D

yn
am

ic

Other-malware vs. ABT

API package
Manifest
Dynamic
Manifest+Dynamic
TSG
API class

(b) Other-malware vs ABT

Fig. 6: Adversary Error Rate vs. Overlap Ratio divided by
baseline: Manifest + Dynamic. Higher values imply better
robustness.

0.0 0.2 0.4 0.6 0.8 1.0
delta

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Eu
cli

de
an

 d
ist

an
ce

Goodware vs. ABT
API package
Manifest
Dynamic
Manifest+Dynamic
TSG
API class

(a) Goodware vs. ABT

0.0 0.2 0.4 0.6 0.8 1.0
delta

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Eu
cli

de
an

 d
ist

an
ce

Other-malware vs. ABT

API package
Manifest
Dynamic
Manifest+dynamic
TSG
API class

(b) Other-malware vs. ABT

Fig. 7: Euclidean distance among attacker’s and defender’s
feature sets centroids. High values imply higher robustness.

using DBank is over 3 times the error of the baseline when
distinguishing ABTs from goodware, and over 1.6 times the
error rate of the baseline when distinguishing ABTs from
other malware.

We now also evaluate how close the feature space of the
attacker is to the feature space of the defender, by varying ∆
as before. But this time we study the distances between the
feature vectors of defender’s samples using B,G and using
the samples used by the adversary. We tested our algorithm
against many distance functions including Euclidean dis-
tance, Manhattan distance, Kolomogorov-Smirnov distance,
Chebyshev distance and Cosine distance. We report results
with Euclidean distance and K-S distance in the main body
of the paper, while charts for the other distance metrics are
reported in Appendix D (Online Supplementary Material).

Figure 7 and Figure 8 show the distances between the
feature vectors generated using B,G as compared to the
training samples used by the adversary decreases as we
vary ∆. We see that the TSG features generate the biggest
distances, substantially more than traditional features. In all
cases, we note that as ∆ increases, the distance between
the feature vectors generated using B,G as compared to the
training samples used by the adversary decreases. This is
not surprising as an increase in ∆ means that the adversary
more accurately guessed what we used to train on.

5.2 Accuracy-Robustness Trade-off of DBank’s TSG vs
traditional features

In this section, we answer the second question posed at the
beginning of this section. Specifically, we would like to un-

0.0 0.2 0.4 0.6 0.8 1.0
delta

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ko
lo

m
og

or
ov

-S
m

irn
ov

 d
ist

an
ce

Goodware vs. ABT

API package
Manifest
Dynamic
Manifest+Dynamic
TSG
API class

(a) Goodware vs. ABT

0.0 0.2 0.4 0.6 0.8 1.0
delta

0.0

0.1

0.2

0.3

0.4

0.5

Ko
lo

m
og

or
ov

-S
m

irn
ov

 d
ist

an
ce

Other-malware vs. ABT

API package
Manifest
Dynamic
Manifest+Dynamic
TSG
API class

(b) Other-malware vs. ABT

Fig. 8: Kolomogorov-Smirnov distance among attacker’s
and defender’s feature sets centroids. High values imply
higher robustness.

derstand whether the defender can use a subset of his train-
ing samples, and change it over time to mislead the attacker.
The first concern when considering a smaller training sam-
ple is that predictive accuracy will drop. In this section, we
evaluate how AUC and robustness vary when the defender
uses smaller percentages ρ of the training data. Each exper-
iment also varies the overlap ratio ∆, as before. The result
is shown in Figure 9: both when predicting ABTs vs. good-
ware. The x-axis varies the percentage of defender’s training
data ρ, while the y-axis reports values normalized by the
value obtained with traditional features. By varying the size
of the intersection overlap ratio ∆ ∈ {10%, 20%, . . . , 90%}
with B ∪ G, also vary the actually used size of the total
training sets with ρ ∈ {10%, 20%, . . . , 90%}. Again, we
randomly select 50 sets of samples for the adversary with
similar distributions as B ∪ G, and measure the ratio of the
prediction’s error rate, normalized by dividing it by the error
rate of the baseline (consisting of API package call features,
static features from the APK’s Manifest and the Dynamic
features) as the overlap ratio (different non-red + lines) and
the training set ratio is varied (X-axis), and the predicted
AUC results by only TSG features (red + lines).

Values higher than 1 in the y-axis of Figure 9 imply
that TSG-based features are better than traditional features
(e.g., Manifest, Dynamic) in terms of adversary error rate.
We see that the error rate generated using TSG features
is always greater than the error of the baseline when dis-
tinguishing ABTs from goodware, while our TSG features
yields high predictive accuracy AUCs. We also report AUC
and show that it remains high in the different scenarios
even when 20% or 30% of the training set is used. This
allows the defender to use a moving defense surface [19],
[20] by changing the specific training set over time while
maintaining good predictive accuracy (AUC) performance.

5.3 Robustness against Fake Calls
Another attack that can be launched against DBank is that of
“fake calls”. For instance, we see from previous discussion
that a low frequency of calls to some particular Android API
packages may help DBank identify a binary as an ABT. An
attacker can try to evade this by making more calls to that
API to avoid suspicion. A fake call to an API package adds
edges to the Triadic Suspicion Graph. Suppose we define the
“fake call percentage” or FCP to be the ratio of the number
of fake calls in a TSG to the total number of edges in the TSG

11

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
: different proportions of training set

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Ad
ve

rs
ar

y
Er

ro
r R

at
e

(T
SG

 /
M

an
ife

st
)

Goodware vs. ABT, TSG vs. Manifest
 = 0.0
 = 0.1
 = 0.2
 = 0.3
 = 0.4
 = 0.5
 = 0.6
 = 0.7
 = 0.8
 = 0.9
 = 1.0

(a) TSG vs. Manifest

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
: different proportions of training set

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Ad
ve

rs
ar

y
Er

ro
r R

at
e

(T
SG

 /
Dy

na
m

ic)

Goodware vs. ABT, TSG vs. Dynamic
 = 0.0
 = 0.1
 = 0.2
 = 0.3
 = 0.4
 = 0.5
 = 0.6
 = 0.7
 = 0.8
 = 0.9
 = 1.0

(b) TSG vs Dynamic

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
: different proportions of training set

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Ad
ve

rs
ar

y
Er

ro
r R

at
e

(T
SG

 /
M

an
ife

st
+D

yn
am

ic)

Goodware vs. ABT, TSG vs. Manifest+Dynamic

 = 0.0
 = 0.1
 = 0.2
 = 0.3
 = 0.4
 = 0.5
 = 0.6
 = 0.7
 = 0.8
 = 0.9
 = 1.0

(c) TSG vs. Manifest+Dynamic

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
: different proportions of training set

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
Ad

ve
rs

ar
y

Er
ro

r R
at

e
(T

SG
 /

AP
I P

ac
ka

ge
)

Goodware vs. ABT, TSG vs. API Package
 = 0.0
 = 0.1
 = 0.2
 = 0.3
 = 0.4
 = 0.5
 = 0.6
 = 0.7
 = 0.8
 = 0.9
 = 1.0

(d) TSG vs. API Package

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
: different proportions of training set

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Ad
ve

rs
ar

y
Er

ro
r R

at
e

(T
SG

 /
AP

I C
la

ss
)

Goodware vs. ABT, TSG vs. API Class
 = 0.0
 = 0.1
 = 0.2
 = 0.3
 = 0.4
 = 0.5
 = 0.6
 = 0.7
 = 0.8
 = 0.9
 = 1.0

(e) TSG vs. API Class

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
: different proportions of training set

0.90

0.92

0.94

0.96

0.98

1.00

AU
C

(T
SG

)

Goodware vs. ABT, TSG

(f) AUC (TSG)

Fig. 9: AUC performance and adversary error rate of
DBank’s TSG vs. traditional features using different propor-
tions ρ of the training set.

Fig. 10: Impact of Fake Call Attack on DBank’s Performance

(both real and fake). Figure 10 shows that DBank is robust
to an attack that tries to increase the FCP with the Random
Forest classifier used in DBank showing AUCs close to 1.

6 ANALYSIS OF 5 MAJOR ABT FAMILIES

In this section, we report on a detailed study and compari-
son of the behaviors that distinguish 5 major ABT families

from both goodware and other malware. In particular, we
study some five of the top banking families according to
Kaspersky [22]: FakeToken, Svpeng, Asacub, BankBot,
and Marcher.

Note. For space reasons, we report only a selection
of the top features of these families in the main text. In
particular, we report 4 top features for each ABT family vs.
goodware, and 2 top features for each ABT family vs. other-
malware. We show more top features for ABT vs. goodware
because they offer more diversities, and are more relevant
from a security analyst’s perspective. The full pair of top-10
histograms for each family are reported in Appendix D).

6.1 Analysis of FakeToken
A major ABT family is FakeToken, which performs a
number of malicious acts. It can capture the content of
phone calls, overlay fake screens (e.g. bank screens) so
that it can capture banking information, and even overlay
taxi and ride-sharing apps with fake requests for credit
card information—which of course is then immediately
stolen [21]. In fact, security companies have estimated that
FakeToken can overlap over 2,000 financial apps with
fake screens designed to steal financial and other informa-
tion [34]. Other versions of FakeToken also incorporate
ransomware style behavior.

Figure 11(a) shows four of the top-10 features that best
distinguish FakeToken from goodware. We specifically see
that certain features individually do a great job in distin-
guishing FakeToken from goodware. In particular, unlike
goodware FakeToken samples:
• request some peculiar permissions with much higher

prevalence then goodware: permission to send SMS,
permission to read phone state, and permission to
get active tasks in the phone; the latter two are likely
used to determine when is the best moment to act,
and possibly also to monitor whether a banking app
task is running.

• in general, it requests more permissions than usual
goodware.

• make almost no calls to certain standard
API packages such as android.text and
android.content while goodware typically
make a reasonable number of such calls.

• FakeToken’s size is smaller than most goodware,
suggesting that it probably does not piggyback ap-
plications.

As expected, the features that distinguish FakeToken
from other malware are different than those mentioned
above and two of them are shown in Figure 11(b). In
particular, unlike other-malware, FakeToken samples:
• tend to have a higher number of activities, which

represent the interfaces shown to the user;
• in some cases calls function from

android.app.admin package, probably as an
attempt to perform administrative operations;

• have on average more intents, used for inter-
component communications in the Android OS;

• have a different distribution in the usage of some
system API packages with respect to traditional mal-
ware.

12

0 2500 5000 7500 10000
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

android.content

Faketoken
Goodware

0.0 0.5 1.0
Feature value 1e8

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

filesize

Faketoken
Goodware

0.0 0.2 0.4 0.6 0.8 1.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

permission:GET_TASKS

Faketoken
Goodware

0.0 0.2 0.4 0.6 0.8 1.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

permission:READ_PHONE_STATE

Faketoken
Goodware

(a) FakeToken vs. goodware

0 100 200 300
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

num_activities

Faketoken
Other-malware

0 20 40 60 80 100
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

num_std_permissions

Faketoken
Other-malware

(b) FakeToken vs. other-malware

Fig. 11: FakeToken distinguishing features: Histograms of feature values.

0 250 500 750 1000 1250
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

android.net

Svpeng
Goodware

0.0 0.2 0.4 0.6 0.8 1.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

permission:WRITE_SMS

Svpeng
Goodware

0 20 40 60
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

read b'/data/'

Svpeng
Goodware

0 20 40 60 80
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

read

Svpeng
Goodware

(a) Svpeng vs. goodware

0.0 0.2 0.4 0.6 0.8 1.0
Feature value 1e8

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

filesize

Svpeng
Other-malware

0 500 1000 1500
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

android.app

Svpeng
Other-malware

(b) Svpeng vs. other-malware

Fig. 12: Svpeng distinguishing features: Histograms of feature values.

6.2 Analysis of Svpeng
According to a 2017 Kaspersky Lab report by renowned
cybersecurity expert Roman Unuchek [39], Svpeng used
phishing attacks to target users. Later, when those users
went to bank websites, they were redirected to fake (but
near identical) websites from which their banking creden-
tials were stolen. Later “upgraded” versions of Svpeng
used a Chrome browser vulnerability and also used other
techniques. Other reports (e.g., [42]) describe the distribu-
tion of Svpeng through fake websites.

Figure 12(a) shows four of the top 10 features that best
distinguish Svpeng from goodware. In particular, unlike
goodware, Svpeng samples:

• request the permission to WRITE_SMS, which is very
uncommon in goodware applications.

• make almost no calls to standard API packages such
as android.app, android.content, java.lang
and android.net while goodware typically make
a reasonable number of such calls. This tends to
suggest that Svpeng may not be using piggybacking
of larger applications (i.e., it is not a modified version
of a goodware application with added malicious
functionality).

• perform a number of dynamic read and class loading
operations similar to the distribution of goodware;
however, there are some particular permissions (e.g.,
INSTALL_LOCATION_PROVIDER, which is usually
prohibited for third-party apps and allows an app
to install a custom location provider for the Location
Manager) and some class names loaded at runtime
(e.g., com.suimeng-1.apk) which allow for detec-
tion of Svpeng samples.

Two of the top-10 features that distinguish Svpeng from
other-malware are shown in Figure 12(b). There is more sim-
ilarity between the Svpeng and the other-malware features
than Svpeng and goodware. However, there are still some
distinguishing traits. In particular, Svpeng samples tend to
use more java.lang, android.widget and java.util
calls than other-malware. Moreover, Svpeng samples tend
to have smaller filesize than that of other malware.

6.3 Analysis of Asacub

Though around since 2015, Asacub was the most widely
spread mobile banking trojan of 2017 according to Kasper-
sky Labs [33]. It infects users through a phishing message
injected via an SMS offering to show certain photos to
users—when the users attempt to view the photo, they are
infected. The attacks are widespread and estimated to target
40,000 users per day [18].

Figure 13(a) shows four of the top 10 features that best
distinguish Asacub from goodware. In particular, Asacub
samples:

• request permissions to write SMS, which is very rare
for goodware to do.

• make almost no calls to certain standard
API packages such as android.database,
android.graphics and android.animation
while goodware typically uses them.

• have small filesize, suggesting that piggybacking is
likely not adopted.

Figure 13(b) shows two of the top-10 features of Asacub
vs. other-malware. In particular, unlike other malware,
Asacub samples:

• define many background services, whereas other mal-
ware has more variance but mostly lower number of
definitions; these may be used to carry silent mali-
cious activities; Asacub samples also define a higher
number of intents for inter-process communication;

• tend to define a higher number of Android Activities,
which represent the window interfaces that could be
shown to a user, and is less typical for other malware;

• use more android.telephony APIs, used also to
interact with SMS and calls—possibly to prevent
alerts and warnings from the bank.

6.4 Analysis of BankBot

BankBot is another major Android malware that, like those
mentioned above, tries to overlay fake screens/pages when
the user attempts to visit various banking sites [23]. It is

13

0 10 20 30 40 50
Feature value

0.0

0.2

0.4

0.6

0.8

1.0
Pe

rc
en

ta
ge

android.app.admin

Asacub
Goodware

0.0 0.5 1.0
Feature value 1e8

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

filesize

Asacub
Goodware

0.0 0.2 0.4 0.6 0.8 1.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

permission:WRITE_SMS

Asacub
Goodware

0 1000 2000 3000 4000 5000
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

android.util

Asacub
Goodware

(a) Asacub vs. goodware

0 20 40
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

num_services

Asacub
Other-malware

0 100 200 300
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

android.telephony

Asacub
Other-malware

(b) Asacub vs. other-malware

Fig. 13: Asacub distinguishing features: Histograms of feature values.

0 1000 2000 3000 4000 5000
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

android.util

Bankbot
Goodware

0.0 0.2 0.4 0.6 0.8 1.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

dexclass
b'com.slempo.service-1.apk'

Bankbot
Goodware

0 1 2 3 4
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

write b'com.app.xml'

Bankbot
Goodware

0.0 0.2 0.4 0.6 0.8 1.0
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

dexclass
b'ahmyth.mine.king.ahmyth-1.apk'

Bankbot
Goodware

(a) BankBot vs. goodware

0 200 400 600 800
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

java.lang.reflect

Bankbot
Other-malware

0 50 100 150
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

write

Bankbot
Other-malware

(b) BankBot vs. other-malware

Fig. 14: BankBot distinguishing features: Histograms of feature values.

injected into users’ phones by pretending to be a normal
benign app and being careful to exhibit malicious behavior
not immediately upon infecting a smartphone, but after a
latency period (e.g., logic time bombs).

Figure 14(a) shows four of the top-10 features of
BankBot vs goodware. In particular, BankBot samples:

• perform much dynamic class loading (dexclass)
and read/write operations on specific JAR and APK
files, which possibly suggest dynamic unpacking—
typically used to load code at runtime dynamically.

• Unlike goodware, they request the permission to
WRITE_SMS.

• Perform fewer calls to methods in some APIs pack-
ages such as java.nio and android.util.

Figure 14(b) shows two of the top-10 features that distin-
guish BankBot vs other-malware. In particular, unlike other
malware, BankBot samples:

• tend to have smaller filesize;
• perform more dynamic write operations;
• in some cases, use more android.content,

java.lang and java.reflect APIs; in particular,
the last one involves reflection operations (e.g., run-
time resolution of function calls) typically used for
obfuscation purposes and possibly associated with
repacking.

6.5 Analysis of Marcher

the Marcher malware infects users by telling them that
their Flash players need to be updated—once the unsus-
pecting users do so, their machine is infected, enabling the
attacker to install apps of his own choosing as well as to
nullify existing security mechanisms [44].

Figure 15(a) shows 4 of the top-10 features of Marcher
vs goodware. In particular, Marcher samples:

• invoke the android.app.admin class 10+ times, to
attempt usage of Android APIs with admin privi-
leges.

• As other banking trojans, Marcher has small filesize
and, unlike goodware, almost no call to some stan-
dard Android libraries.

• as in other banking trojans, Marcher requests much
more permissions than standard goodware, among
which the permission to send SMS.

Figure 15(b) reports 2 of the top-10 features of Marcher
vs other-malware. In particular, unlike other malware,
Marcher samples:

• invoke methods in the Android API package
android.app.admin package, which is slightly
less common for other malware to do;

• generally define more background services, activities
and intents than the average other malware;

• have smaller filesize and different distribution of API
usage from the different packages.

7 PRIOR WORK

We discuss 3 types of related work: literature on Android
banking trojans (ABTs) which constitute the body of work
closest to this paper, literature on desktop banking trojans
(DBTs) and literature on Android malware detection.

Literature on Android Banking Trojans. The closest
work to our paper is DroydSeuss [11], a tool to analyze
ABTs using static and dynamic analysis to identify possible
malware artifacts such as CnC domain names with frequent
itemset mining, to unveil malware campaigns using the
same infrastructure. DroydSeuss analyzes 4,293 Android
malware samples belonging to 5 families: ZitMo, SpitMo,
CitMo, iBanking and FankeBank. The major difference from
our paper is that DroydSeuss is an analysis tool that takes
as input applications already known to be banking trojans—
it does not perform detection of ABTs from goodware
and other malware; DroydSeuss does not propose a novel
feature space, and it does not evaluate robustness of their
methods against any adversary; furthermore, it relies on a
dataset with just 5 ABT families, while our datasets contains
104 ABT families (with 34 families containing at least 10
samples). Stamba [6] provides a strategy to test Android

14

0 10 20 30 40 50
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

android.app.admin

Marcher
Goodware

0.0 0.5 1.0
Feature value 1e8

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

filesize

Marcher
Goodware

0 5000 10000 15000 20000
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

android.widget

Marcher
Goodware

0 20 40 60 80 100
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

num_std_permissions

Marcher
Goodware

(a) Marcher vs. goodware

0 50 100 150
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

android.app.admin

Marcher
Other-malware

0 20 40 60
Feature value

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

num_services

Marcher
Other-malware

(b) Marcher vs. other-malware

Fig. 15: Marcher distinguishing features: Histograms of feature values.

mobile apps at the application level, the communication
level and the device level.The testing strategy includes 4
parts: static analysis, dynamic analysis, web app server
security and device forensic. The paper contains a case study
of using the strategy of a few APKs that are known to be
malicious. Unlike our paper, Stamba does not use machine
learning to distinguish between bankers and other malware
and goodware. Actually, the strategy of used was only
tested on a few APKs that are known to be malicious, unlike
our paper that uses thousands of APKs. Finally, Etaher
et al. [15] report on the trends and development of Zeus
by reviewing papers and reports about this major banking
trojan. Unlike our paper, the analysis of [15] is based on
literature review and not on analyzing APKs.

Literature on Desktop Banking Trojans. The literature
also contains papers on desktop banking trojans. The meth-
ods used in these papers do not necessarily apply to An-
droid trojans as the the Android OS presents very different
characteristics and environment for which new tools are
required [38], [26]. Criscione et al. present Zarathustra [12],
a tool to detect web-inject based trojans that leverages
the fact that web pages are rendered differently on clean
machines and on infected machines. More specifically, the
paper leverages the fact that modern banking trojans are
equiped with WebInject, a functionality that can silently
modify a web page on the victim. Therefore, Zarathustra
finds out that an APK is banking trojan if installing that
APK on a host causes some web pages to be rendered
differently. An evaluation of Zarathustra against 213 URLs
of banking websites and 56 samples of Zeus found that
the tool had no false negatives and 1% false positives.
Banksafe [7] detects banking trojan infections from inside
the web browser by detecting attempts made by malicious
software to manipulate the browsers’ networking libraries.
Banksafe was tested on 1,093 banker samples from 7 families
(Zeus, SpyEye, Patcher, Carberp, Silentbanker, Bebloh, Gozi
and Katusha) and was able to detect 99.6% of these samples.
Zarathustra and Banksafe are very different from our paper
in the sense that they do not use machine learning nor static
and dynamic analysis of APKs. Finally, Gregio et al. [16]
develop BanDIT, a dynamic analysis system that identifies
behavior related to ABTs that combines visual analysis,
network traffic pattern matching and filesystem monitoring.
BanDIT is a Windows kernel driver that traces the execution
of an executable and the processes it interacts with. The sys-
tem was able to identify 98.8% of ABTs in a manually labeled
set of 1,500 malware samples. The identified ABTs were
characterized according to whether they perform the fol-
lowing behaviors: information stealing, PAC loading, email
sending, bank images and host changing. These operations

may also be performed in support of pivoting activities [3].
BanDIT [16] also reported the compromised IP and email
addresses found. In the DBank paper, we do not develop a
novel dynamic analysis tool. Instead we use the results of
dynamic and static analysis as features of machine learning
classifier.

Literature on Android Malware Detection. Traditional
work on Android malware analysis has two main objec-
tives: malware detection and family identification. The first
problem investigates whether a given Android applica-
tion is benign or malicious, and the second problem tries
to identify whether a given malware sample belongs to
a known family (i.e., group of malware variants) so to
apply same patching and removal techniques [10]. Some
examples of malware detection solutions are DREBIN [4],
DroidAPIMiner [2], CrowDroid [8], DroidScope [41], MAR-
VIN [25], MaMaDroid [27],SigPID [24], MADAM [31], the
deep android malware detection system [28] Hindroid [17]
and [9]. DREBIN [4] and DroidAPIMiner [2] are lightweight
detection methods for Android malware that uses static
analysis. DREBIN detects 94 % of the malware with a
low false positive rate whereas DroidAPIMiner achieves 99
% accuracy and 2.2 % false positive rate. CrowDroid [8]
detects applications that have a benign name and ver-
sion, but that are malicious. CrowDroid does so through a
framework that collects and compares execution traces from
users using a crowdsourcing approach. DroidScope [41]
is a virtualization-based platform for analyzing APKs that
collects native and Dalvik instruction traces and profile API-
level activity. DroidScope tracks also information leakage
through taint analysis. MARVIN [25] combines static and
dynamic analysis and uses machine learning to distinguish
between malware and goodware. MaMaDroid [27] builds a
classifier to detect malware based on features extracted from
a behavioral model in the form of a Markov chain, built
based on the sequence of abstracted API calls performed by
an app. SigPID [24] develops methods to identify significant
permissions linked to the malware vs. goodware prediction
problem and show that only 22 out of 135 permissions
are neded to ito achieve over 90% detection accuracy. The
MADAM system [31] delivers methods to identify over 96%
of malicious Android apps while providing a low false pos-
itive rate. The deep android malware detection system [28]
uses convolutional neural nets in conjunction with static
analysis methods to separate Android malware from good-
ware. The Hindroid system [17] develops a heterogeneous
information network and then uses metapath analysis to
predict if a sample is goodware or malware. Finally, [9]
develops a regression model based on decompiled code
analysis for distinguishing goodware and malware.

15

Such works on malware detection are different from our
paper for two main reasons: these works consider all mal-
ware categories as one big group whereas we focus on ABTs;
moreover, these works do not perform a data-driven char-
acterization of any particular malware category—especially
ABTs, which are the focus of our paper.

8 CONCLUSION

We have presented DBank a novel framework for dis-
tinguishing between Android banking trojans (ABTs) and
goodware, and other types of malware. In particular, we
propose a feature set based on the novel concept of Triadic
Suspicion Graph (TSG). We show that, while we achieve
similar accuracy to lightweight feature sets in past work,
TSG-based features are more robust to some adversary
attacks, and still achieves high accuracy even when using
a subset of training data. We evaluate our system on recent
(2016-2017) Android ABTs, and we show how DBank can
automatically extract relevant features that can highlight
differences from specific ABT families vs. goodware and
other-malware.

ACKNOWLEDGEMENTS

We thank the anonymous referees for their excellent com-
ments and suggestions. We additionally thank Salvador
Mandujano and Sai Deep Tetali of the Google Android Se-
curity Team for excellent suggestions and comments on our
work. Parts of the work were funded by: US Army Research
Office grant W911NF1410358, ONR grants N00014-18-1-
2670, N00014-16-12896, and N000141612739; NATO Science
for Peace and Security grant SPS G5319; UK EPSRC grant
EP/L022710/2.

REFERENCES

[1] Koodous. https://koodous.com/. Accessed: November 2018.
[2] Y. Aafer, W. Du, and H. Yin. DroidAPIMiner: Mining API-level

features for robust malware detection in android. In SecureComm.
Springer, 2013.

[3] G. Apruzzese, F. Pierazzi, M. Colajanni, and M. Marchetti. Detec-
tion and threat prioritization of pivoting attacks in large networks.
IEEE Transactions on Emerging Topics in Computing, 2017.

[4] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck.
DREBIN: Effective and Explainable Detection of Android Malware
in Your Pocket. In NDSS, 2014.

[5] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel. FlowDroid: Precise con-
text, flow, field, object-sensitive and lifecycle-aware taint analysis
for android apps. Acm SIGPLAN Notices, 2014.

[6] S. Bojjagani and V. N. Sastry. STAMBA: Security Testing for An-
droid Mobile Banking Apps. In S. M. Thampi, S. Bandyopadhyay,
S. Krishnan, K.-C. Li, S. Mosin, and M. Ma, editors, Advances in
Signal Processing and Intelligent Recognition Systems, volume 425,
pages 671–683. Springer International Publishing, Cham, 2016.
DOI: 10.1007/978-3-319-28658-7 57.

[7] A. Buescher, F. Leder, and T. Siebert. Banksafe Information Stealer
Detection Inside the Web Browser. In R. Sommer, D. Balzarotti,
and G. Maier, editors, Recent Advances in Intrusion Detection,
volume 6961, pages 262–280. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011. DOI: 10.1007/978-3-642-23644-0 14.

[8] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani. Crowdroid:
behavior-based malware detection system for android. In SPSM.
ACM, 2011.

[9] L. Cen, C. S. Gates, L. Si, and N. Li. A probabilistic discrim-
inative model for android malware detection with decompiled
source code. IEEE Transactions on Dependable and Secure Computing,
12(4):400–412, 2015.

[10] T. Chakraborty, F. Pierazzi, and V. S. Subrahmanian. Ec2: Ensem-
ble clustering and classification for predicting android malware
families. IEEE Transactions on Dependable and Secure Computing,
2017.

[11] A. Coletta, V. van der Veen, and F. Maggi. DroydSeuss: A
Mobile Banking Trojan Tracker (Short Paper). In J. Grossklags
and B. Preneel, editors, Financial Cryptography and Data Security,
volume 9603, pages 250–259. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2017. DOI: 10.1007/978-3-662-54970-4 14.

[12] C. Criscione, F. Bosatelli, S. Zanero, and F. Maggi. ZARATHUS-
TRA: Extracting Webinject signatures from banking trojans. pages
139–148. IEEE, July 2014.

[13] S. K. Dash, G. Suarez-Tangil, S. Khan, K. Tam, M. Ahmadi,
J. Kinder, and L. Cavallaro. Droidscribe: Classifying android
malware based on runtime behavior. In 2016 IEEE Security and
Privacy Workshops (SPW), pages 252–261. IEEE, 2016.

[14] A. P. Documentation. Api package list. https://developer.android.
com/reference/packages, Visited in Mar. 2019.

[15] N. Etaher, G. R. Weir, and M. Alazab. From ZeuS to Zitmo: Trends
in Banking Malware. IEEE TrustCom, 2015.

[16] A. R. A. Grégio, D. S. Fernandes, V. M. Afonso, P. L. de Geus, V. F.
Martins, and M. Jino. An empirical analysis of malicious internet
banking software behavior. In Proceedings of the 28th Annual ACM
Symposium on Applied Computing, pages 1830–1835. ACM, 2013.

[17] S. Hou, Y. Ye, Y. Song, and M. Abdulhayoglu. Hindroid: An
intelligent android malware detection system based on structured
heterogeneous information network. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 1507–1515. ACM, 2017.

[18] ITWEB. https://www.itweb.co.za/content/j5alr7QljxGvpYQk,
Visited in Nov. 2018.

[19] S. Jajodia, A. K. Ghosh, V. Subrahmanian, V. Swarup, C. Wang, and
X. S. Wang. Moving Target Defense II: Application of Game Theory and
Adversarial Modeling, volume 100. Springer, 2012.

[20] S. Jajodia, N. Park, F. Pierazzi, A. Pugliese, E. Serra, G. I. Simari,
and V. Subrahmanian. A probabilistic logic of cyber deception.
IEEE Transactions on Information Forensics and Security, 2017.

[21] Kaspersky. FakeToken report. https://www.kaspersky.com/
blog/faketoken-trojan-taxi/18002/, Visited in Nov. 2018.

[22] Kaspersky. Most prevalent Android banking trojan fami-
lies in 2016. https://cdn.press.kaspersky.com/files/2017/05/
Kaspersky Lab financial cyberthreats in 2016 final.pdf, Visited
in Nov. 2018.

[23] M. Kumar. https://thehackernews.com/2017/11/
bankbot-android-malware.html, Visited in Nov. 2018.

[24] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an, and H. Ye. Signifi-
cant permission identification for machine-learning-based android
malware detection. IEEE Transactions on Industrial Informatics,
14(7):3216–3225, 2018.

[25] M. Lindorfer, M. Neugschwandtner, and C. Platzer. Marvin:
Efficient and comprehensive mobile app classification through
static and dynamic analysis. In IEEE COMPSAC, 2015.

[26] M. Marchetti, F. Pierazzi, A. Guido, and M. Colajanni. Countering
Advanced Persistent Threats through security intelligence and big
data analytics. In 2016 8th International Conference on Cyber Conflict
(CyCon). IEEE, 2016.

[27] E. Mariconti, L. Onwuzurike, P. Andriotis, E. De Cristofaro,
G. Ross, and G. Stringhini. MaMaDroid: Detecting android mal-
ware by building markov chains of behavioral models. NDSS,
2017.

[28] N. McLaughlin, J. Martinez del Rincon, B. Kang, S. Yerima,
P. Miller, S. Sezer, Y. Safaei, E. Trickel, Z. Zhao, A. Doupe, et al.
Deep android malware detection. In Proceedings of the Seventh
ACM on Conference on Data and Application Security and Privacy,
pages 301–308. ACM, 2017.

[29] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank
citation ranking: Bringing order to the web. Technical report,
Stanford InfoLab, 1999.

[30] K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov. Learning
and classification of malware behavior. In DIMVA. Springer, 2008.

[31] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli. Madam:
Effective and efficient behavior-based android malware detection
and prevention. IEEE Transactions on Dependable and Secure Com-
puting, 15(1):83–97, 2018.

[32] SecureList. https://securelist.com/
mobile-malware-review-2017/84139/, Visited in Nov. 2018.

16

[33] Securelist. Asacub report. https://securelist.com/
the-rise-of-mobile-banker-asacub/87591/, Visited in Nov.
2018.

[34] Securelist. FakeToken report. https://securelist.com/
booking-a-taxi-for-faketoken/81457/, Visited in Nov. 2018.

[35] Statista. https://www.statista.com/statistics/271774/
share-of-android-platforms-on-mobile-devices-with-android-os/,
Visited in Nov. 2018.

[36] Statista. https://www.statista.com/chart/7478/
android-is-the-most-vulnerable-operating-system/, Visited
in Nov. 2018.

[37] G. Suarez-Tangil, S. K. Dash, M. Ahmadi, J. Kinder, G. Giacinto,
and L. Cavallaro. Droidsieve: Fast and accurate classification of
obfuscated android malware. In Proceedings of the Seventh ACM
on Conference on Data and Application Security and Privacy, pages
309–320. ACM, 2017.

[38] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro. Copperdroid: Au-
tomatic reconstruction of android malware behaviors. In NDSS,
2015.

[39] R. Unuchek. Svpeng report. https://securelist.com/
a-new-era-in-mobile-banking-trojans/79198/, Visited in Nov.
2018.

[40] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck. Modeling and
discovering vulnerabilities with code property graphs. In Security
and Privacy (SP), 2014 IEEE Symposium on, pages 590–604. IEEE,
2014.

[41] L. K. Yan and H. Yin. DroidScope: Seamlessly reconstructing
the OS and Dalvik semantic views for dynamic android malware
analysis. In USENIX Security, 2012.

[42] ZDNET. Svpeng report. https://www.zdnet.com/article/this-
android-banking-malware-steals-data-by-exploiting-smartphone-
accessibility-services/, Visited in Nov. 2018.

[43] M. Zhang, Y. Duan, H. Yin, and Z. Zhao. Semantics-aware android
malware classification using weighted contextual api dependency
graphs. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pages 1105–1116. ACM,
2014.

[44] ZScaler. https://www.zscaler.com/blogs/research/
new-android-marcher-variant-posing-adobe-flash-player-update,
Visited in Nov. 2018.

BIOGRAPHIES

Chongyang Bai is a second-year Ph.D. student
at Dartmouth College advised by Prof. V.S. Sub-
rahmanian. He obtained a BS in Computational
Mathematics and BEng in Computer Science
from University of Science and Technology of
China in 2016. From 2015 to 2016, he was a
research intern at Microsoft Research Asia. His
research interests are machine learning and so-
cial network analysis.

Qian Han is a third-year Ph.D. student at Dart-
mouth College advised by Prof. V.S. Subrahma-
nian. He received a BEng in department of Elec-
tronic Engineering from Tsinghua University in
2016. During 2015, he spent 3 months as a visit-
ing research assistant at Nanyang Technological
University, Singapore. His research interests lie
in cybersecurity, data-mining, game theory, and
social network analysis.

Ghita Mezzour is an Assistant Professor at the
International University of Rabat. She received
a Ph.D. in Electrical and Computer Engineer-
ing from Carnegie Mellon University in 2015.
She received a MS and BS in Communication
Systems for Ecole Polytechnique Federale de
Lausanne in 2008 and 2006 respectively. Her re-
search interests include cybersecurity, big data,
and social network analysis. Prof. Mezzour was
selected as a Rising Star by MIT’s Electrical En-
gineering and Computer Science Department in

November 2015 and held a visiting position at the University of Maryland
at College Park during Summer 2017.

Fabio Pierazzi is a Visiting Research Associate
at King’s College London and PostDoc at Royal
Holloway, University of London, UK. He com-
pleted PhD in Computer Science at University
of Modena and Reggio Emilia (Italy) in March
2017. During 2016, he spent 10 months as a vis-
iting research scholar at University of Maryland,
College Park, MD, USA. His research interests
focus on machine learning for security, with focus
on malware analysis and intrusion detection.

V.S. Subrahmanian is the Dartmouth College
Distinguished Professor in Cybersecurity, Tech-
nology, and Society and Director of the Institute
for Security, Technology, and Society at Dart-
mouth. He previously served as a Professor of
Computer Science at the University of Maryland
from 1989-2017 where he created and headed
both the Lab for Computational Cultural Dynam-
ics and the Center for Digital International Gov-
ernment. He also served for 6+ years as Director
of the University of Maryland’s Institute for Ad-

vanced Computer Studies. Prof. Subrahmanian is an expert on big data
analytics including methods to analyze text/geospatial/relational/social
network data, learn behavioral models from the data, forecast actions,
and influence behaviors with applications to cybersecurity and counter-
terrorism. He has written five books, edited ten, and published over 300
refereed articles. He is a Fellow of the American Association for the
Advancement of Science and the Association for the Advancement of
Artificial Intelligence and received numerous other honors and awards.
His work has been featured in numerous outlets such as the Baltimore
Sun, the Economist, Science, Nature, the Washington Post, American
Public Media. He serves on the editorial boards of numerous journals
including Science, the Board of Directors of the Development Gateway
Foundation (set up by the World Bank), SentiMetrix, Inc., and on the
Research Advisory Board of Tata Consultancy Services. He previously
served on DARPA’s Executive Advisory Council on Advanced Logistics
and as an ad-hoc member of the US Air Force Science Advisory Board.

