
When Adversarial Perturbations meet Concept Drift:
an Exploratory Analysis on ML-NIDS

Giovanni Apruzzese

giovanni.apruzzese@uni.li

Liechtenstein Business School

University of Liechtenstein

Vaduz, Liechtenstein

Aurore Fass

fass@cispa.de

CISPA Helmholtz Center for

Information Security

Saarbruecken, Germany

Fabio Pierazzi

fabio.pierazzi@kcl.ac.uk

Department of Informatics

King’s College London

London, United Kingdom

Abstract

We scrutinize the effects of “blind” adversarial perturbations

against machine learning (ML)-based network intrusion detection

systems (NIDS) affected by concept drift. There may be cases in

which a real attacker – unable to access and hence unaware that

the ML-NIDS is weakened by concept drift – attempts to evade the

ML-NIDS with data perturbations. It is currently unknown if the

cumulative effect of such adversarial perturbations and concept

drift leads to a greater or lower impact on ML-NIDS. In this “open

problem” paper, we seek to investigate this unusual, but realistic,

setting—we are not interested in perfect knowledge attackers.

We begin by retrieving a publicly available dataset of documented

network traces captured in a real, large (>300 hosts) organization.

Overall, these traces include several years of raw traffic packets—

both benign and malicious. Then, we adversarially manipulate ma-

licious packets with problem-space perturbations, representing a

physically realizable attack. Finally, we carry out the first exploratory
analysis focused on comparing the effects of our “adversarial ex-

amples” with their respective unperturbed malicious variants in

concept-drift scenarios. Through two case studies (a “short-term”

one of 8 days; and a “long-term” one of 4 years) encompassing 48

detector variants, we find that, although our perturbations induce a

lower detection rate in concept-drift scenarios, some perturbations

yield adverse effects for the attacker in intriguing use cases. Over-

all, our study shows that the topics we covered are still an open

problem which require a re-assessment from future research.

CCS Concepts

• Security and privacy→ Intrusion detection systems; • Com-

puting methodologies→Machine learning.

Keywords

network intrusion detection, adversarial example, machine learning,

mcfp, ctu13, data drift, distribution shift, temporal evaluation

ACM Reference Format:

Giovanni Apruzzese, Aurore Fass, and Fabio Pierazzi. 2024. When Adversar-

ial Perturbations meet Concept Drift: an Exploratory Analysis on ML-NIDS.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

AISec ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1228-9/24/10

https://doi.org/10.1145/3689932.3694757

In Proceedings of the 2024 Workshop on Artificial Intelligence and Security
(AISec ’24), October 14–18, 2024, Salt Lake City, UT, USA. ACM, New York,

NY, USA, 12 pages. https://doi.org/10.1145/3689932.3694757

1 Introduction

The protection of modern network infrastructures is typically re-

liant on Network Intrusion Detection Systems (NIDS) [10, 63]. To

give NIDS a chance against the constantly mutating threat land-

scape, state-of-the-art defenses now rely on Machine Learning (ML)

methods [11, 33]. Unfortunately, the integration of ML in NIDS is

not exempt from problems: first, the intrinsic evolution of the net-

work environment (“concept drift”), which leads to performance

degradation over time [35]; second, the susceptibility of ML models

to tiny perturbations in the input data (“adversarial examples”),

which may enable an attacker to bypass the defense [15]. Taken in-

dividually, both of these phenomena have been widely investigated

by prior literature [5, 39]. However, we wonder: what happens if an
“unaware” attacker attempts to adversarially evade an ML-NIDS im-
pacted by concept drift? Perhaps surprisingly, no work (background

in §2.1) simultaneously considers the effects of (realizable) adversar-

ial perturbations against ML-NIDS trained on “outdated” datapoints.

In these circumstances, which resemble real-world deployments of

ML-NIDS [10, 75], is concept drift an ally of the attacker or of the

defender? We seek to shed light on this question.

The first challenge we have to overcome to pursue our quest

is finding a proper dataset. Contrarily to traditional malware

detection repositories (e.g., AndroZoo [52]) – containing constantly

updated and publicly available historical data – the NIDS context is

much more nuanced: every network is unique, and publicly avail-

able data is scarce [11]. For instance, the evaluation of a notable

work on concept drift [5] considers the CICIDS17 [61] dataset, which

contains only 5 days of traffic. After searching the current ecosys-

tem of open datasets for ML-NIDS, we found a solution in the

datasets from the Malware Capture Facility Project (MCFP [1]). We

discuss our choice (as well as some pitfalls of prior work) in §3.

The second challenge is realizing realistic evasion attacks. It

is well known [15] that ML models can be evaded by adversaries

with full knowledge of the ML model [31], or with the possibility

of querying the target ML model [78]. However, such knowledge /

capabilities are not free to acquire for real attackers [6] (e.g., only

sysadmins can observe the output of an NIDS [8]), who may opt for

different (and potentially less-accurate) strategies. Moreover, abun-

dant prior work (e.g., [36, 77]) on adversarial ML attacks against

ML-NIDS relies on feature-space perturbations, i.e., the manipula-

tion occurs after the data has been preprocessed by the NIDS, which
is not very realistic [8] and may also reflect physically unrealizable

perturbations [53]. Hence, for our attacks we operate on the raw

https://orcid.org/0000-0002-6890-9611
https://orcid.org/0000-0001-6611-4447
https://orcid.org/0000-0002-1254-1758
https://doi.org/10.1145/3689932.3694757
https://doi.org/10.1145/3689932.3694757

AISec ’24, October 14–18, 2024, Salt Lake City, UT, USA Giovanni Apruzzese, Aurore Fass, and Fabio Pierazzi

network packets, which we manipulate by introducing random bytes

of junk data—doable by any attacker who can control the network

communications of some hosts (threat model in §2.2). We explain

our procedure and discuss its real-world validity in §4.

Aug 15,

2011201
1

202
1

Short-term
Aug. 10–18, 2011

"past" (train) "future"

Long-term
Feb. 2017–Jul. 2021

"past" (train) "future"

Neris,Rbot,Virut

Jul 1,

2017

Dridex,Artemis,Trickster,Trickbot,WannaCry

Fig. 1: Overview of our evaluation.We carry out two case studies (“short-term”

and “long-term”) using real-network data from MCFP [1] captured between 2011 and

2021, and pertaining to various malicious classes as well as benign traffic. We craft

adversarial perturbations in the problem space, manipulating the datapoints generated

in the “future”, and compare their impact to non-adversarial datapoints.

After having overcome these challenges, we carry out an ex-

ploratory analysis, which revolves around two case studies—sharing

a similar design but spanning over vastly different timespans (see

Fig. 1). Specifically, both case studies focus on the problem of mali-

cious NetFlow detection, and entail assessing the performance of

various ML-NIDS (employing different ML algorithms and archi-

tectures) in adversarial and non-adversarial settings. The first case

study spans over just one week (August 10–18th, 2011), whereas

the second case study spans over four years (from 2017 to 2021).

In both case studies, we assess the performance of our considered

ML-NIDS at different points in time. After training ML-NIDS on

some “past” data, we assess the impact of concept drift by mea-

suring their performance on “future” data—thereby validating our

testbed (in terms of data and baselines). Then, we focus onmalicious
NetFlows, and we scrutinize whether the application of adversarial

perturbations (in the problem space) makes such NetFlows more or

less likely to evade the ML-NIDS—compared to their unperturbed

(but still malicious) variants. We also consider an attack-agnostic

adversarial ML defense suitable for NetFlow-based ML-NIDS [7]

but whose effectiveness in our setting is still unexplored. We repeat

all our experiments 50 times, ensuring statistical robustness of our

results. Intriguingly, our results (discussed in §5) show that some

adversarial perturbations can be detrimental to the attacker if the

ML-NIDS is under concept drift, confirmed by the resulting adver-

sarial NetFlows being easier to detect (we try to interpret these

unexpected phenomena with low-level analyses in §5.3).

Contributions. This paper sheds light on a problem that

has never been investigated before in the ML-NIDS context: the

combination of realistic (blind, realizable) adversarial perturbations

with concept drift. To this end, we:

● pinpoint an open-source (and documented) dataset that can be
used for concept-drift assessments in ML-NIDS (and which has

been overlooked by most research);

● craft problem-space adversarial perturbations by manipulating

raw network traffic (and share our implementation, which works

on any PCAP), simulating a simple and feasible attack;

● investigate the extent to which ML-NIDS are statistically signifi-
cantly affected by realistic adversarial perturbations in concept-

drift contexts—showcasing why we tackle an “open problem”.

We also derive recommendations (§6) for future research, and we

publicly release our resources [3], which also include benchmarking

results and additional descriptions of our workflow and methods.

2 Preliminaries and Scope

To setup the stage for our contribution, we first position our paper

within existing literature (§2.1); then we present our envisioned

and realistic threat model (§2.2).

2.1 Background and Related Work

Our paper lies at the intersection of three popular research areas of

cyber security: NIDS, ML for security, and security of ML. In what

follows, we briefly summarise all of these.

ML-NIDS. Since complete prevention of cyberattacks is unattain-

able, intrusion detection systems (IDS) represent the primary line of

defense of modern organizations against cyber threats [10]. These

systems perform their detection via rules [67] (which cannot cap-

ture zero-day attacks) and/or data-driven heuristics—such as those

based on machine learning [63]. An IDS can analyse various in-

formation, which can be captured either at the host- or network-

level [11, 20]. In this paper, we focus on machine-learning–based
network intrusion detection systems (ML-NIDS), for which numer-

ous papers exist (whose evaluations have been done both on syn-

thetic [61] and real-world [28] data). Despite some shortcomings

(e.g., false alarms [4]) there is evidence that ML is being integrated

in operational platforms [58], and practitioners believe the combi-

nation of rules and ML to be the best way to address network secu-

rity [44]. Unfortunately, ML methods are affected by two security-

noteworthy issues [10]: their susceptibility to “concept drift” [14]

and to “adversarial ML attacks” [15]—both of which are exacerbated

in a network context (as pointed out in, e.g., [11, 17]).

Concept Drift. Abundant prior efforts have shown that the per-

formance of ML models deteriorates over time [38]. This phenome-

non stems from the ML model being “overly-reliant” on its training

data: if the data seen at inference differs substantially from that seen

by the ML model during its learning phase, then its output may not

be correct [10]. Unfortunately, modern networks are constantly-

mutating ecosystems—from both the “benign” (e.g., devices may be

added or removed) and “malicious” (attackers refine their tactics)

perspective [11, 42]. Extant cybersecurity literature mostly investi-

gated concept drift in malware detection contexts [14, 16, 62], with

some recent efforts considering this (still open) problem also for

ML-NIDS [5, 46, 70, 72, 75]. Despite their undeniable contributions,

however, we argue that most related research has shortcomings

due to an intrinsic limited scope of the adopted testbed, which hardly

resembles realistic use cases (we motivate this statement in §3.1).

Attacks vsML-NIDS. Security assessments of IDS in adversarial

settings are not new [23, 31]. A large body of recent literature specif-

ically focused on the vulnerability of ML-NIDS to “adversarial ML

attacks” [8], wherein the goal is to mislead the ML model through

tiny “data perturbations”. These ML-intrinsic vulnerabilities can

affect the ML model either before or after its deployment[15]: we
focus on evasion attacks at inference (we are not interested in “poi-

soning” ML-NIDS [21, 59, 60]). Early work in this domain (e.g., [9])

considered attacks whose perturbations were crafted in the “fea-

ture space”: as pointed out in [53], such a procedure may result in

attacks that are not physically realizable—unless the adversary can

directly tamper with the ML-NIDS [8] (which is a not very realis-

tic scenario [6] that is outside our scope). Some works overcome

such a limitation by applying the perturbations in the “problem

When Adversarial Perturbations meet Concept Drift: an Exploratory Analysis on ML-NIDS AISec ’24, October 14–18, 2024, Salt Lake City, UT, USA

space”, i.e., by manipulating the network packets generated by

the attacker-controlled hosts [30, 71, 73]. Nevertheless, a recent

work [6] highlighted that most adversarial ML research considers

powerful attackers (in terms of knowledge and capabilities), making

the corresponding threat models difficult to enact in practice.

Research Gap.No prior work specifically investigated the effects

of blind adversarial perturbations againstML-NIDS under concept

drift in a realistic setting—which is our goal.

The closest paper we could find is the ACSAC’22 work byWang [72].

However: (i) its concept-drift evaluation is affected by the data
limitations outlined in §3.1; (ii) the attacker is assumed to be able to

query the ML-NIDS, which is unrealistic [6]; (iii) the perturbations
are crafted in the feature space, potentially leading to unrealizable

attacks [53]. Hence, to the best of our knowledge, this is still an

open problem—which we seek to cast some light upon.

2.2 Threat Model (adv. perturbations + concept drift)

Our analysis is rooted on a realistic threat model, which depicts a

constrained attacker that must evade a state-of-the-art ML-NIDS. A

schematic representation of our threat model is provided in Fig. 2.

Target System. We consider anML-NIDS deployed at the perime-

ter of a “Class B”, medium-to-large network [2] (i.e., [256–65k]

hosts). The ML-NIDS integrates some ML models, which are col-

lectively trained to identify (malicious) network traffic pertaining

to 𝑀 + 1 classes—which can be seen as either a binary- or multi-

classification ML problem (having 𝑀 malicious classes, and one be-

nign class). TheML-NIDS accepts input in the form of network flows

(NetFlow; see Appendix A), which is a practical datatype [11, 50, 55].

The ML-NIDS may integrate additional analytical elements (e.g.,

signature-based detectors of payload [67]) but these are outside

our scope. The owners of the ML-NIDS have verified that the ML

models exhibit high true-negative rate (𝑡𝑛𝑟) and high true-positive

rate (𝑡𝑝𝑟) before its deployment, and hence expect the ML-NIDS

to “work well” to identify “known” threats (i.e., whose datapoints

can be attributed to one among the 𝑀 classes) after its deployment.

The owners, however, are unaware of potential concept drift.

Border
Router

Internet

Organization
Network

infected
host

attacker

NIDS
ML

Fig. 2: Threat Model. The attacker is outside the organization’s network, cannot

access the NIDS, and only knows that an ML model analyzes network traffic.

Envisioned Attacker. The adversary has obtained control of

some (low privileged) hosts within the organization’s network—

via, e.g., exploits or accidental infection. The attacker wants to
remain undetected, so that they can achieve their true objective

(e.g., exfiltration or sabotage [68]). The attacker is, however, heavily

constrained—from a traditional “adversarial ML” perspective.

● Knowledge. The attacker has limited knowledge of the ML-

NIDS. They only know that (i) some ML model analyzes network

data; and that (ii) such ML model has “seen” datapoints of the

piece of malware used to control the host. However, the attacker

does not know: the details/configuration of the ML model; the

exact type of analyzed data (i.e., “features”); the training set; and

whether the ML-NIDS is affected by concept drift.

● Capabilities. The attacker can fully control their infected hosts.

However, the attacker has no power on theML-NIDS: they cannot

observe its output (i.e., for “query-based” strategies [72]), and

cannot manipulate the traffic beyond the controlled host (i.e.,

for “feature-space” perturbations [9]). Moreover, the attacker can

control only a limited number of hosts, hence the attacker cannot

create a “surrogate” ML-NIDS [65] by passively capturing traffic

(which would never be representative of the entire organization).

In this context,
1
the attacker has two strategies: (a) do nothing—the

attacker may “hope” that the ML-NIDS will not be able to detect

their presence (e.g., due to concept drift, or because the alarms are

not triaged [66]); or (b) try to evade the ML-NIDS—however, the

realistic constraints prevent launching “guaranteed” adversarial

ML attacks [6], hence the attacker can only introduce blind pertur-

bations
2
which may (or may not!) help in remaining concealed.

A real-attacker’s dilemma. It is unknown whether it is bene-

ficial to introduce blind adversarial perturbations in an attempt

to bypass ML-NIDS affected by concept drift. The attacker must

make a choice—potentially one which may be detrimental to their

goal. We seek to explore this dilemma—which is relevant for real-

world ML-NIDS: these are well known to be subject to concept

drift and are also deployed in adversarial environments [10].

3 Data Preparation (a “how to” guide)

As our first contribution, we elucidate the challenges that entail fair

and realistic assessments of concept drift in ML-NIDS from a data

perspective (§3.1) and then describe our identified “solution,” i.e.,

the MCFP dataset (§3.2). Finally, we explain how we use MCFP (§3.3).

3.1 Challenge: Finding the right data

Carrying out assessments on “concept drift” is not trivial in research,

due to the lack of appropriate datasets. Importantly: abundant prior

work has expressed concerns on the overall utility of well-known

publicly available datasets for NIDS-related research (e.g., [10, 19,

32, 37]), but no work has specifically analysed their suitability for

concept-drift assessments. We will now do such an analysis.

Data Requirements. As highlighted in [11], investigating the

effects of concept drift on ML-NIDS requires a dataset that can

realistically represent a concept-drift setting. In practice, this neces-

sitates that (i) the data captures a “long” timeframe; (ii) the malicious

data reflects “naturally-occurring” phenomena; and (iii) the data
is “unambiguously” labeled. The first requirement serves to assess

the performance over time; the second serves to avoid biased eval-

uations in which malicious datapoints are artificially created and

would not naturally occur; the third serves to ascertain that po-

tential misclassifications are fairly validated. While these threefold

requirements are relatively easy to fulfill for, e.g., malware detection

(due to the existence of publicly available and constantlymaintained

repositories containing “historical” malware [14, 45, 52, 74]), this is

1

Remark: according to [6], the ML-NIDS is an “invisible ML system” for our attacker.

We stress that our scenario is sensible and portrays a much weaker (but hence more

likely!) attacker than those envisioned in most prior works on ML-NIDS [8, 31].

2

Prior work (not on concept drift) found “blind” perturbations can be effective [9, 48].

AISec ’24, October 14–18, 2024, Salt Lake City, UT, USA Giovanni Apruzzese, Aurore Fass, and Fabio Pierazzi

not the case for ML-NIDS. Indeed, most currently available datasets

do not allow for satisfactory concept-drift evaluations.

Data Pitfalls. Let us discuss existing publicly available datasets
for ML-NIDS in light of prior research on concept drift. We be-

gin with the NSL-KDD dataset (used in [46]), which is well known

to present flaws that do not make it representative of real-world

networks [10]. Then, we mention CICIDS17 (used in [72]) and its

extension CICIDS18 (used in [75]): both of which have been recently

criticized for being intrinsically flawed [27, 37] (notably, [5] uses the

fixed version of CICIDS17); regardless, they include data created via

simulations and spanning over only 5 days—which is not enough

to gauge the effects of concept drift on a realistic deployment of an

ML-NIDS. Next, there is UNSWNB15 (used in [41]), which only con-

tains 15 hours of traffic. Even the dataset by Pahl et al. [51] (used

in [70]) and Kitsune (used in [72]) have barely 1 day of capture. A

noteworthy mention is UGR16 (used in [22]), with traffic spanning

over 100 days: the issue is that the labeling is not consistent,
3
and is

mostly appropriate for “anomaly detection” (which does not neces-

sarily pertain to cyber threats, since an anomaly is not necessarily

an intrusion event [12]). A similar issue also affects the Kyoto2006

dataset (used in [25, 29]), which is collected over 15 years but for

which there is no validated ground truth. Some works (e.g., [40, 72])

also attempt to “mix” datasets captured from substantially different

networks, which is considered to be an unreliable procedure [11].

Disclaimer.We are not “pointing the finger,” and we do not seek

to invalidate prior work. On the contrary, we want to reflect on

the current state of concept-drift evaluations in ML-NIDS—with

the ultimate goal of improving this research domain.

3.2 A (open source) solution: the MCFP dataset

After surveying the landscape of public datasets for ML-NIDS, we

found a solution
4
which enables comprehensive assessments of con-

cept drift: the data fromMalware Capture Facility Project (MCFP) [1],

which extends the well-known CTU13 (created in 2014 [28]).

Characteristics. The MCFP is a collection of packet captures

(PCAP) provided with accurate ground-truth information of (among

others): the infected hosts, the piece of malware, as well as the start

and end time of the infection. Importantly, the malicious packets are

generated by “contemporary” malware: the creators of MCFP infect

their hosts with pieces of recent malware (e.g., WannaCry was used in

2017) to study their behavior (for comparison, CICIDS17 artificially

created malicious traffic by using offensive techniques popular

many years before
5
). Moreover, MCFP is captured in a real university

campus, and the “benign” traffic pertains to hundreds (>300) of

hosts (for comparison, CICIDS17 and Kitsune only entail a network

with a dozen hosts). Notably, MCFP is built on top of the well-known

CTU13 dataset [28] (which spans over a single week, starting from

August 10th, 2011); however, MCFP contains traffic up to 2021. Indeed,

among the strongest points of MCFP is that it contains up-to-date

benign and malicious data—the latter encompassing a number of

network-related malware (such as WannaCry or Trickbot) whose traffic

3

Furthermore, UGR16 does not have PCAP, preventing problem-space perturbations.

4

We do not claim to have created MCFP, nor that this dataset is the only one suitable

for our scope; we are, however, underscoring its relevance for future work.

5

E.g., the CICIDS17 (from 2017) uses Heartbleed which became popular in 2014.

is captured over long timespans (even years!). Finally, having been

collected by the same (set of) creators, it is consistent.6

Takeaway. The MCFP is a suitable solution for assessments of

ML-NIDS under concept drift. It is large, entails long timespans,

ground truth is provided, and includes various types of benign and

malicious (entailing recent attacks) traffic in PCAP format.

3.3 Practically using MCFP data (our testbed)

We explain how we used MCFP to carry out our exploratory analysis.

Design Goals. Recall that we are not only interested in assessing
the impact of concept drift on ML-NIDS, but also in investigating

the effects of adversarial perturbations crafted with the intent of

having malicious NetFlows be classified as benign. Hence, we need

(labeled) malicious and benign NetFlows. Furthermore, since we

consider problem-space attacks, we must manipulate the PCAP

(which is provided in MCFP). Moreover, we also want the analysis

to encompass a “large” number of NetFlows (otherwise, the results

would be questionable). Finally, for a fair comparison, we must

ensure that for any considered malicious class, the ML-NIDS has

seen NetFlows of such a class during its training phase:
7
this is

necessary, because misclassifications of NetFlows stemming from

“novel” attacks cannot be attributed to concept drift (it is an “out-

of-distribution” case [35]).

Benign Data. We first retrieve all benign data available in MCFP,

which is summarized in Table 5 (in the Appendix); detailed informa-

tion on each PCAP is provided by the source (reachable by “clicking”

on the links in Table 5). Altogether, we take benign traffic from

the original CTU13 (related to both “background” and “active” com-

munications), as well as more “recent” traffic. Besides the size of

the corresponding PCAP, we also report the number of NetFlows

generated by processing the PCAP via Argus [56]. We consider

Argus for two reasons: (1) it is used by the creators of CTU13 to

create and label [28] the NetFlows—which is necessary to ensure

that our labeling is correct;
8
(2) because it yields practical ML-NIDS

(as shown in [11, 28]) and has no known flaws (e.g., CICFlowMeter

has issues [27]). Overall, our benign datasets span over 7 years, and

contain millions of NetFlows—allowing for a sound analysis.

Malicious Data. Then, we selectively inspect the various PCAP
pertaining to malicious traffic. We found that some attacks do not

allow for a sound analysis (e.g., short timeframe, or small number

of NetFlows). Ultimately,
9
we considered 65 PCAP traces pertain-

ing to 8 network-related malware, reported in the Appendix in

Table 6 (having the same structure as Table 5). Specifically, three

6

Despite our search, we are not aware of any other open-source dataset that has the

same characteristics as MCFP and that has more recent traffic. Surprisingly, the only

prior work on concept drift we found that considered a similar testbed was [49] (albeit

we are unsure how the temporal aspect was accounted for in [49]; see §6)

7

Formally, let𝑀 be the set of malicious classes known by an ML model 𝒞; let𝑚 ∈𝑀

be a class, and let𝑚𝑡 be the NetFlows associated to𝑚 included in the training set of

𝒞. We want to test the performance of 𝒞 on NetFlows𝑚𝑖 , i.e., belonging to class𝑚

but analysed during the inference stage of 𝒞 (with𝑚𝑖 ≠𝑚𝑡). Therefore, in this paper

we focus on supervised ML (and not on unsupervised ML methods [26]).

8

Recall that we will apply our perturbations in the problem space, i.e., by manipulating

the raw traffic. Hence, we must generate, and then manually label, the corresponding

feature representation (i.e., the Network Flows) to train and test our ML-NIDS.

9

We provide in our repository [3] a supplementary document describing the detailed

procedure we followed to derive our considered malicious classes.

When Adversarial Perturbations meet Concept Drift: an Exploratory Analysis on ML-NIDS AISec ’24, October 14–18, 2024, Salt Lake City, UT, USA

PCAP
(non-adversarial)

MCFP
repository

get
compare
results

PCAP
(adversarial)

perturb
malicious

NetFlow
(adversarial)NetFlow

extractor
(Argus) NetFlow

(non-adversarial)

temporal
split

past future

past future

ML
model

train
test

malicious,
benign

Fig. 3: Experimental Workflow. We get benign and malicious PCAP from MCFP and manipulate only the malicious traces—yielding problem-space adversarial perturbations.

Next, we take all PCAPs and extract (and label) the corresponding NetFlows. Finally, we train ML models (on both benign and malicious “past” data) and test their effectiveness on

“future” data (benign, malicious, and adversarial) in a concept-drift setting. We repeat our experiments 50× to ensure statistically sound comparisons of our results.

are from CTU13 (Neris, Rbot, Virut), while five are more recent (Artemis,

Trickbot, Trickster, Wannacry, Dridex). Overall, our selection allows for a

comprehensive analysis, given that we have over 40k NetFlows per

class. We consider both “recent” and “older” attacks because we

carry out two case studies (see Fig. 1), discussed in the next section.

4 Experiment Setup & Implementation

To prepare our main contribution, we now craft our adversarial

perturbations (§4.1) and develop the ML models (§4.2) used in our

exploratory analysis (§4.3). Our workflow is shown in Fig. 3.

4.1 “Blind” Adv. Perturbations on Raw Traffic

In crafting our “adversarial examples”, we are inspired by prior

works [9, 30, 53, 73]. We do not aim to assess “novel” attacks.

Context. Recall that our attacker (§2.2) has limited knowledge

and capabilities w.r.t. the ML-NIDS. However, the attacker can

control their infected hosts and induce them to generate altered

network communications—but without any assurance that such

changes help evasion. The attacker is, however, aware of extant

research. Prior work [9] showed that NetFlow ML-classifiers exhib-

ited a lower detection rate against datapoints having tiny alterations

(applied in the feature space) in the exchanged bytes. Such an effect

can be reproduced in the problem space by “blindly” appending

junk data to network packets [73]. Practically, we assume that the

attacker adds padding data to UDP packets, as well as to TCP pack-

ets with the PSH flag (some TCP packets do not admit padding).

Indeed, while operating in the problem space we need to ensure

that the resulting perturbations (i) do not break the packets’ mali-

cious semantics/functionality [24], and (ii) do not violate domain

constraints [53]. Our choice ensures compliance with this twofold

requirement, while aligning with our envisioned attacker.

Remark: we focus on assessments of malicious (adversarial and
non-adversarial) datapoints for evasion. We do not manipulate

any benign data (but we will use these for validation purposes).

Problem-space Manipulations. To realize our perturbations,

we first take the malicious PCAP traces (Table 6 in the Appendix).

Then, for each PCAP trace, we iterate over all the packets con-

tained therein and create four “adversarial” PCAP traces—each by

selectively manipulating a subset of its packets. Specifically:

● we create one adversarial trace bymanipulating only UDP packets,

by adding a small padding of [1–100] random bytes to their

payload (this range is to align with the realistic setting of [9]);

● then, we create another adversarial trace by manipulating only
TCP packets with the PSH flag active, also by adding a small

padding of [1–100] random bytes to their payload;

● finally, we repeat the previous two steps, creating two “secondary”

adversarial traces (one for UDP and one for TCP packets with the

PSH flag) to mitigate the potential bias introduced by the random

padding and provide more statistically robust results.

Every other packet is appended as-is to each adversarial PCAP

trace. While applying the manipulations, we also: (i) ensure that
each packet does not exceed its maximum length—in which case,

the packet will be filled until the end; and (ii) recreate the checksum.

These operations are done via the scapy library (used also in [30,

34]), and can be carried out by our envisioned attacker (§2.2). Finally,

and crucially, our problem-space perturbations will transfer [53] to

the “feature space” since our ML-NIDS use NetFlows [69] which

include features that depend, among others, on the amount of data

transmitted by the two endpoints (refer to Appendix A).

Open source. Few works assess ML-NIDS against adversarial

perturbations in the problem space (§2.1), which requires careful

operations on PCAP traces. To spearhead future research, we re-

lease the code of our “Packet Modifier” [3], which can be used by

future work to assess different perturbations (by changing, e.g., the

padding, the types of packets, or even consider benign traffic).

4.2 Preprocessing and Machine Learning

Having crafted our (adversarial and non-adversarial) PCAP traces,

we must generate (and label) the NetFlows (i.e., the feature repre-

sentation of our traces) to prepare them for our ML experiments.

Annotation. We extract the NetFlows from our raw PCAP traces

with Argus [56] (see §3.2); the Argus config is in our repo [3].

Notably, while processing our adversarially-manipulated PCAP

traces, Argus does not raise any errors—thereby confirming (i) the
correctness of our procedure and (ii) that the resulting NetFlows

are not “flawed”; of course, the output of Argus for our adversarial

PCAP traces is different from the one for the corresponding non-

adversarial ones (which is expected [69]). Next, we must assign the

ground truth to each NetFlow.We rely on the official documentation

of MCFP (and of CTU13). Specifically, we first label the NetFlows for

the data corresponding to CTU13; then, to validate our procedure, we

compare our NetFlows with those provided in CTU13 (this dataset

is provided both as raw PCAP and as preprocessed NetFlows): we

appreciate that there is an almost perfect match (we manually

correct inconsistencies—for which we found no documentation

in CTU13). Then, we label the NetFlows for all other PCAP traces

by following the respective documentation (there are no labeled

NetFlows available for these PCAP traces); we apply the same

labeling logic for the original and adversarial NetFlows.

Threat to validity:We acknowledge some labeling errors may

be present, but we adhered to the source documentation. Never-

theless, even practitioners admit to label coarsely [18, 66].

AISec ’24, October 14–18, 2024, Salt Lake City, UT, USA Giovanni Apruzzese, Aurore Fass, and Fabio Pierazzi

ML Detectors. For our exploratory analysis, we follow the best

practices of prior work on “pragmatic assessment” of ML-NIDS [11].

First, to enable a broad analysis, we: (a) consider two ML algorithms
which are known to provide good results on NetFlow classifica-

tion [11, 50, 73]: Random Forest (RF) and Histogram-Gradient Boost-

ing (HGB). Then, we (b) consider various detection architectures: a
“full” binary classifier, treating all malicious NetFlows as a single ma-

licious class; and an “ensemble” of binary classifiers, each focusing

on a specific malicious class (more details in §5). All these classifiers

analyze 38 common NetFlow values (e.g., exchanged bytes, packets,

duration) and we avoid considering “inappropriate” features (e.g., IP

addresses [13]) inducing overfitting; we also map the network ports

to the IANA port types (as done in [11]). The complete details of

our implementation (including the hyperparameters of our chosen

ML models) are provided in our repository [3].

4.3 Case Studies (malicious NetFlow detection)

We explain how we orchestrate our resources to fulfill our objective.

Method. To carry out our exploratory analysis, we design two

case studies (outlined in Fig. 1 in the Introduction), sharing similar

properties but differing on the time perspective.

● Short-term Case Study (SCS), of one week (Aug. 10→18, 2011).

● Long-term Case Study (LCS), of four years (Feb. 2017→Jul 2021).

Specifically, we are inspired by [25, 52] and perform the following

steps. (1) For each case study, we establish a cutoff date: the “past”
data before such a date is used to develop our ML-NIDS, while the

“future” data after such a date serves to test the ML-NIDS—both in

adversarial and non-adversarial settings. (2) We develop our ML-
NIDS: we consider the “past” data and perform a 70:30 train:test

split (which is common [11, 43]); each ML-NIDS is trained on the

same training data, and its performance (before deployment) is

assessed on the same test data. We verify that the performance

(high 𝑡𝑝𝑟 and high 𝑡𝑛𝑟) justifies its deployment. (3) We implement

an adversarially hardened variant for each ML-NIDS with the de-

fense proposed in [7] (which has been found effective to harden

NetFlow-based classifiers—but against feature-space perturbations).

(4)We assess the impact of concept drift by measuring the perfor-

mance on all ML-NIDS on “future” data. We expect a drop in the 𝑡𝑝𝑟

and 𝑡𝑛𝑟 w.r.t. those achieved on the “past” data. (5)We gauge our

adversarial perturbations by testing all the ML-NIDS on “future” ad-

versarial data. We will compare the evasiveness of non-adversarial

(malicious) NetFlows with their adversarial variants. (6) To ensure

statistical robustness, steps 2–5 are repeated 50 times—each by train-

ing all our detectors on a different (randomly drawn) subset of

“past” data.
10

N.b.: such repetitions entail re-assessing each “new”

detector against all variants (2xTCP, 2xUDP) of our adversarial data

(as well as against the original malicious and benign NetFlows).

Details and Motivations. Here, we clarify some lingering ques-

tions related to our design choices. [How to select the cutoff date?]
Given that we assume (see Footnote-7 and §2.2) that the ML-NIDS

must be tested on data belonging to the malicious classes seen dur-

ing training, our cutoff date is set to Aug. 15th, 2011 for SCS and

Jul. 1st, 2017 for LCS. By observing Tables 6 in light of these dates,

10

Hardware:We run our experiments on an Intel Xeon W-2195@2.3GHz(36 cores),

256GB RAM. Overall, our analysis took ≈3 weeks of computational runtime.

one can appreciate that all our considered malicious classes match

our assumption. [What about benign data?] For a realistic assess-
ment, we also train/test on benign data: for SCS, we use those in

Table 5b; for LCS, we use the “background” of Table 5b and those in

Table 5a (unfortunately, there are no “background” captures in MCFP

beyond those in Table 5b).
11

To balance our datasets (“background”

NetFlows are ≈10x “active”), we consider three background traces

and drop 20% of their NetFlows (randomly chosen). Roughly, our

ML-NIDS are trained on ∼1M “background” NetFlows, and ∼200K

(for SCS) or ∼400K (for LCS) “active” NetFlows. Regardless, since

our priority is to investigate the simultaneous effects of concept

drift and adversarial perturbations on ML-NIDS, the timespans of

our case studies reflect the capture dates of malicious data (which
is why LCS is reported to span across 2017–2021). [Why two case
studies?] We consider two case studies to (i) enable a broad analysis,
but also to (ii) increase the chances of witnessing concept drift.

Most prior research (§3.1) only considered short timespans (e.g.,

one week [5]). The major issue of concept drift is that it is impossi-

ble to know a priori if, when, and how it will occur [11]. To the best

of our knowledge, we are the first to consider this exact testbed for

concept-drift assessments. Thus, even we are unsure of what we

will find: considering both SCS and LCS increases the chances that

our ML-NIDS will be affected by concept drift—enabling to study

the combined effects of concept drift and adversarial perturbations.

5 Exploratory Analysis

We now delve into our primary contribution.We verify the presence

of concept drift (§5.1), then gauge the impact of our adversarial

perturbations (§5.2) and shed light on intriguing phenomena (§5.3).

Recap. Before we begin, let us emphasize some key points of our

evaluation. Across our case studies (SCS and LCS), we develop 48

ML-NIDS: 20 for SCS and 28 for LCS. These numbers are given by: 2

ML algorithms (RF and HGB) × 2 hardening types (a “defense” and

a “vanilla” variant) × 5 (for SCS) or 7 (for LCS) architectures. These

architectures depend on the malicious classes considered in each

case study (see Fig. 1), i.e., 3 for SCS (Neris,Rbot,Virut) and 5 for LCS

(Artemis,Dridex,Trickbot,Trickster,Wannacry). For instance, in SCS, we have 5

architectures: a “full” binary classifier, trained and tested (for 50

times) on all three malicious classes (treated as a single malicious

class) and on benign NetFlows; three “malware-specific” binary

classifiers, trained and tested (for 50 times) on the specific malware

class and on benign NetFlows; and an “ensemble” composed by all

three malware-specific classifiers: the final output is determined in

a LOR mechanism, wherein each malware-specific classifier analyzes

any given NetFlow and, if at least one yields a “positive” prediction,

the output is malicious (and benign otherwise). Our workflow en-

sures no “data snooping” (besides, we have no reason for this: our

analysis is exploratory and we do not seek to “outperform” prior

work!). These procedures are inspired by the guidelines in [11, 13].

Remark: Considering also the malware-specific classifiers as a

stand-alone ML-NIDS is crucial: (i) an organization may use ML

only to detect a specific malicious class; and (ii) it allows one to
ascertain howwell a “different” classifier can help compensate the

deficiencies of another classifier when integrated in an ensemble.

11

We acknowledge that such a procedure (done also by [49]) may bear limitations. We

favor consistency (instead of mixing data from different networks [11]). Nevertheless,

our focus is on malicious data—which is not affected by this limitation.

When Adversarial Perturbations meet Concept Drift: an Exploratory Analysis on ML-NIDS AISec ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 1: Pre-deployment results. We assess the performance of our ML-NIDS on the test set from “past” data. We report the average 𝑡𝑝𝑟 (on malicious samples) and 𝑡𝑛𝑟

(on benign samples). Cells in boldface are more relevant (they represent architectures denoting “generic” detectors). The defense is denoted with a .

SCS: Aug.10th→Aug.18th, 2011 LCS: Feb.2017→Jul.2021

Full Ens Neris Rbot Virut Full Ens Artemis Dridex Trickbot Trickster Wannacry

Benign

RF 0.999 0.999 0.999 1.000 1.000 0.999 0.999 0.999 0.999 0.999 0.999 0.999

HGB 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

Malicious

RF 0.994 0.992 0.993 0.998 0.966 0.999 0.999 0.999 0.999 0.999 0.999 0.999

HGB 0.992 0.982 0.995 0.999 0.763 0.999 0.999 0.999 0.999 0.999 0.999 0.999

Benign

RF 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

HGB 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

Malicious

RF 0.993 0.992 0.992 0.998 0.953 0.999 0.999 0.999 0.999 0.999 0.999 0.999

HGB 0.989 0.983 0.992 0.998 0.762 0.999 0.999 0.999 0.999 0.999 0.999 0.999

Table 2: Concept-drift results. We assess the performance of our ML-NIDS on the test set from “future” data. We report the 𝑡𝑝𝑟 (malicious) and 𝑡𝑛𝑟 (benign) averaged over

50 trials. Cells in red report cases in which the performance is statistically significantly (𝑝 < 0.05) worse than on the test set of “past” data (in Table 1). The defense is denoted with a .

SCS: Aug.10th→Aug.18th, 2011 LCS: Feb.2017→Jul.2021

Full Ens Neris Rbot Virut Full Ens Artemis Dridex Trickbot Trickster Wannacry

Benign

RF 0.989 0.993 0.993 1.000 1.000 0.969 0.986 0.999 0.993 0.991 0.999 0.998

HGB 0.990 0.982 0.989 0.999 0.990 0.959 0.965 0.999 0.981 0.983 0.993 0.996

Malicious

RF 0.675 0.587 0.701 0.028 0.691 0.927 0.988 0.000 0.982 0.956 0.031 0.994

HGB 0.673 0.757 0.768 0.020 0.663 0.859 0.991 0.010 0.977 0.970 0.031 0.995

Benign

RF 0.990 0.996 0.996 0.999 0.999 0.955 0.951 0.995 0.965 0.986 0.992 0.997

HGB 0.985 0.991 0.995 0.998 0.995 0.955 0.946 0.995 0.962 0.984 0.992 0.996

Malicious

RF 0.631 0.438 0.182 0.024 0.769 0.786 0.957 0.121 0.947 0.920 0.045 0.968

HGB 0.634 0.561 0.192 0.025 0.665 0.791 0.958 0.130 0.944 0.935 0.093 0.949

5.1 Verification Experiment (is our testbed valid?)

As a necessary step, we first ascertain whether our testbed meets

the assumptions of our envisioned scenario (§2.2).

Pre-deployment (are our ML-NIDS good?) We train our ML-

NIDS and assess their performance on the test set (i.e., from the

“past” data), measuring the 𝑡𝑝𝑟 and 𝑡𝑛𝑟 : if these values are poor,

then no organization would deploy such ML-NIDS to protect their

networks. We report the results of this preliminary analysis in

Table 1; boldface denotes the most important ML-NIDS (the “full”

binary and the “ensemble”). We appreciate that the performance of

all ML-NIDS is extremely high (aligning with prior work consid-

ering similar ML-NIDS [11]); interestingly, the Virut-specific HGB

has a subpar 𝑡𝑝𝑟=0.763, but the corresponding ensemble has a much

better one (0.982) thanks to the assistance of the other malware-

specific classifiers. We also confirm that the same near-perfect

performance is achieved by the corresponding “hardened” variants

of our ML-NIDS (denoted with a): this is important for validation

purposes, since the results claimed in the original publication of

the defense [7] showed that, in the absence of adversarial pertur-

bations (and concept drift), the defense did not cause significant

performance degradation. In our supplementary document [3]), we

report also the standard deviation (computed over the 50 trials).

Post-deployment (is there concept drift? We test our ML-NIDS

on NetFlows from “future” data and report the results in Table 2. We

see that there is a substantial drop in the 𝑡𝑝𝑟 for all ML-NIDS in SCS,

and a milder drop for those in LCS (albeit two malware-specific

detectors can recognize almost no malicious NetFlows). The 𝑡𝑛𝑟

also is lower, yielding more false positives. A similar degradation

also affects the defense (). We carry out t-tests: cells in red in

Table 2 denote those cases in which the performance is statisti-

cally significantly worse (𝑝≪0.05) than the baseline (from Table 1);

our supplementary document [3] includes the standard deviations

(computed over the 50 trials) and the description of the t-test. It is

apparent that our ML-NIDS are affected by concept drift, as shown
by the overwhelming number of red cells. In particular, the effects

of such drift lead to (i) an increased number of false alarms—even

a 0.01 lower 𝑡𝑛𝑟 leads to thousands of benign NetFlows being mis-

classified; and to (ii) a significant number of false negatives—some

detectors become completely unreliable, with 𝑡𝑝𝑟 below 0.5

Takeaways. We derive two statistically significant (𝑝 < 0.05)

results. (1) Our ML-NIDS exhibit high 𝑡𝑝𝑟 and 𝑡𝑛𝑟 in the pre-

deployment phase—making them appropriate for our analysis.

(2) Given our considered time-window, our ML-NIDS are affected

by concept drift—validating our future experiments, and proving

that MCFP can be used for concept-drift assessments by future work.

5.2 Attack Evaluation (do “blind” perturbations work?)

Given our prior results, we now focus on investigating our main

objective, i.e., ascertaining the impact of “blind” adversarial per-

turbations under concept drift. Recall that our perturbations entail

changes in a select subset of data (see §4.1). Hence, for a fair com-

parison, in this assessment we will only consider (i) UDP and TCP

NetFlows which (ii) originate from the host “controlled” by the

attacker. This latter requirement is crucial: first, to align with our

threat model (realistically, “malicious” communications originating

from outside a network are more likely to be blocked); second, to

exclude “fictitious” adversarial NetFlows (some NetFlows within a

“malicious” trace may entail communications that have nothing to

do with the attacker’s controlled host). This filtering allows us to

consider only NetFlows denoting a physically realizable attack.

Non-adversarial results. To establish a baseline, we consider

the 𝑡𝑝𝑟 on our non-adversarial (but still malicious!) NetFlows from

“future” data. We report the results in Table 3 (we stress that, due

AISec ’24, October 14–18, 2024, Salt Lake City, UT, USA Giovanni Apruzzese, Aurore Fass, and Fabio Pierazzi

Table 3:Non-adversarial results. We measure the average 𝑡𝑝𝑟 on the “future” malicious NetFlows. We only consider UDP/TCP NetFlows starting from within the network.

The defense is denoted with a : a ↑/↓ denotes when the defense is statistically significantly (𝑝 < 0.05) better/worse than the “vanilla”.

SCS: Aug.10th→Aug.18th, 2011 LCS: Feb.2017→Jul.2021

Full Ens Neris Rbot Virut Full Ens Artemis Dridex Trickbot Trickster Wannacry

UDP
RF 0.980 0.791 0.941 0.151 0.384 0.823 0.807 0.000 0.785 0.832 0.000 0.166

HGB 0.824 0.816 0.990 0.000 0.039 0.754 0.893 0.000 0.807 0.823 0.000 0.593

TCP
RF 0.923 0.715 0.366 0.436 0.773 0.919 0.988 0.000 0.937 0.922 0.996 0.997

HGB 0.943 0.861 0.458 0.615 0.861 0.983 0.993 0.011 0.926 0.975 0.999 0.998

UDP
RF 0.892↓ 0.304↓ 0.031↓ 0.117 0.000↓ 0.698↓ 0.908↑ 0.000 0.893↑ 0.854↑ 0.040↑ 0.586↑

HGB 0.921↑ 0.478↓ 0.025↓ 0.103↑ 0.113↑ 0.705↓ 0.909 0.000 0.864↑ 0.852↑ 0.060↑ 0.583↓

TCP
RF 0.880↓ 0.814↑ 0.412↑ 0.513↑ 0.959↑ 0.979↑ 0.958↓ 0.128↑ 0.741↓ 0.940 0.994 0.973↓

HGB 0.867↓ 0.810↓ 0.378↓ 0.507↓ 0.858 0.982 0.976↓ 0.134↑ 0.744↓ 0.952↓ 0.994↓ 0.945↓

Table 4:Adversarial results. We compute the average 𝑡𝑝𝑟 on “future” adversarial NetFlows. Cells in red denote cases in which the 𝑡𝑝𝑟 is statistically significantly worse
than the baseline in Table 3. A ↑/↓ denotes when the defense is statistically significantly (𝑝 < 0.05) better/worse than the “vanilla”.

SCS: Aug.10th→Aug.18th, 2011 LCS: Feb.2017→Jul.2021

Full Ens Neris Rbot Virut Full Ens Artemis Dridex Trickbot Trickster Wannacry

UDP
RF 0.921 0.602 0.470 0.011 0.032 0.812 0.700 0.000 0.009 0.587 0.000 0.128

HGB 0.824 0.803 0.975 0.014 0.059 0.740 0.899 0.000 0.660 0.833 0.000 0.593

TCP
RF 0.902 0.717 0.381 0.292 0.769 0.929 0.934 0.000 0.869 0.778 0.841 0.991

HGB 0.934 0.861 0.472 0.470 0.822 0.967 0.980 0.022 0.910 0.856 0.298 0.992

UDP
RF 0.873↓ 0.334↓ 0.052↓ 0.050↑ 0.000↓ 0.698↓ 0.908↑ 0.000 0.881↑ 0.855↑ 0.020↑ 0.586↑

HGB 0.889↑ 0.389↓ 0.060↓ 0.079↑ 0.058 0.707 0.909 0.000 0.826↑ 0.856↑ 0.080↑ 0.581

TCP
RF 0.863↓ 0.831↑ 0.400 0.378↑ 0.953↑ 0.922 0.963↑ 0.127↑ 0.721↓ 0.742↓ 0.499↓ 0.969↓

HGB 0.868↓ 0.834 0.414↓ 0.410↓ 0.816 0.931↓ 0.974↓ 0.132↑ 0.651↓ 0.762↓ 0.507↑ 0.949↓

to our filtering, these numbers are different from those in Table 2);

Table 3 also includes the results of the hardened variants of our ML-

NIDS (denoted with). Notably, on SCS, the defense is poor if ap-

plied to the ensemble for (non-adversarial) malicious UDP NetFlows

(𝑡𝑝𝑟=0.304 and 0.478 vs 0.791 and 0.816 for the vanilla ensemble); this

result was not apparent in the original publication of the defense [7],

which did not account for concept drift. However, the defense can
help in LCS. We carry out a t-test to compare the 𝑡𝑝𝑟 of the defense

w.r.t. the “vanilla” ML-NIDS: a ↓ or ↑ in Table 3 denotes cases where

the defense yields a statistically significantly (𝑝≪0.05) inferior (18

cases) or superior (17 cases) 𝑡𝑝𝑟 (for 13 cases, the defense does not

lead to any change that is statistically significant).

Adversarial results. We test our ML-NIDS on the respective

adversarially-perturbed malicious NetFlows. First, we noticed that

(as expected) there is no statistically significant difference between

the “primary” and “secondary” variants of our adversarial traces (see

§4.1). Hence, we report in Table 4 the 𝑡𝑝𝑟 achieved by our ML-NIDS

against the “primary” adversarial traces, showing the perturbations

on the UDP and TCP perturbations (we report the results on the

“secondary” traces in our supplementary document); the defense is

also shown (). Overall, we can see that our perturbations do further
degrade the 𝑡𝑝𝑟 w.r.t. Table 3. We carry out a t-test, comparing

the results from Table 3 with those in Table 4, and report cases

wherein the 𝑡𝑝𝑟 is statistically significantly lower (𝑝≪0.05) in red:

worryingly, the RF is always affected by UDP perturbations on

SCS, and both RF and HGB are almost always affected by TCP

perturbations on LCS. From a game-theory viewpoint, the attacker
should “use” UDP perturbations if he/she expects the ML-NIDS to

rely on RF. Considering the defense, we note a counter-intuitive

result in Table 4: even though the defense exhibits less cases with

a statistically significant degradation than the vanilla (15 red cells

for the defense vs 23 for the vanilla), there are 20 cases (↓) where

the defense is detrimental to the 𝑡𝑝𝑟 , and only 18 cases (↑) in which

the defense is beneficial (w.r.t. the vanilla). This finding shows that

drawing conclusions on the effectiveness of a defense based solely

on whether the corresponding hardened model is more/less affected

by adversarial perturbations can be misleading (echoing [76]).

We perform additional t-tests (described in our supplementary

document [3]) to derive more statistically-sound conclusions. We

confirm that our perturbations lead to a statistically significant

(𝑝≪0.05) decrease for all “vanilla” ML-NIDS in SCS, and all but

three ML-NIDS in LCS: the Artemis- and Wannacry-specific classifiers

(whose 𝑡𝑝𝑟 is extremely low irrespective of the perturbations); and,

remarkably, the Full-binary classifier (𝑝=0.4>0.05): apparently, the

effects of our perturbations on this classifier (for LCS) are not sta-

tistically significant. Then, we also confirm that the “defense” has

underwhelming results (in some cases, it is worse than the vanilla).

This latter finding contrasts with the conclusions of [7], based on

feature-space perturbations (on a testbed similar to our SCS), further

demonstrating that our paper underscores an “open problem.”

Finally, we focus on some individual results. Consider the En-

semble classifier using HGB on LCS against UDP perturbations:

𝑡𝑝𝑟=0.899 vs 0.893 of the baseline (cf. Table 4 with Table 3), i.e.,

the perturbations increase the 𝑡𝑝𝑟 . Interestingly, the Full-binary

classifier has the opposite behaviour in the same setting (0.740 ad-

versarial vs 0.754 non-adversarial). Despite these differences being

not-statistically significant (see Table 4), we use these as a scaffold

to investigate some intriguing phenomena: there may be some cases

in which our perturbations are truly detrimental for the attacker. We

stress that our perturbations are “blind”, and hence not necessarily

result in an “adversarial example” which is guaranteed to evade the

targeted detector. Hence, this counterintuitive result is not to be

taken as a flaw in our evaluation (see [54]).

When Adversarial Perturbations meet Concept Drift: an Exploratory Analysis on ML-NIDS AISec ’24, October 14–18, 2024, Salt Lake City, UT, USA

Full-TCP Ens-TCP artemis-TCP Full-UDP Ens-UDP artemis-UDP
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

Po
si

tiv
e

Ra
te

 (R
ec

al
l)

artemis: Performance on FUTURE data (trials=50)

vanilla
vanilla (adversarial)
defense
defense (adversarial)

(a) True-Positive Rate (Recall)

Full-TCP Ens-TCP artemis-TCP Full-UDP Ens-UDP artemis-UDP
0

100

101

102

103

104

105

To
ta

lM
is

cl
as

si
fic

at
io

ns
(F

al
se

N
eg

at
iv

es
)

artemis: Performance on FUTURE data (trials=50)
vanilla
vanilla (adversarial)
defense
defense (adversarial)

(b) Total Misclassifications (logarithmic scale)

Fig. 4: In-depth analysis of the results against the malicious NetFlows of Artemis (RF algorithm). It is important to note that the results of the Full-binary

and of the Ensemble classifiers here (which consider only malicious NetFlows of Artemis) differ from those covered in §5.2 (which consider all malicious NetFlows).

Takeaways. (1) Our “blind” perturbations do cause a (mild, but

statistically significant) performance degradation, but they have

no effect on the Full-binary classifier on LCS (𝑝=0.4). (2) The

defense has a smaller benefit than reported in [7]. (3) In some

isolated cases, our perturbations have little effect, and concept

drift is enough to defeat the ML-NIDS.

5.3 Low-level Analysis (phenomena and explanations)

We conclude our assessment by elucidating (and trying to interpret)

some findings that can only be appreciated with an in-depth look.

Use-case. We report in Figs. 4 the results on the NetFlows of

Artemis (from LCS) achieved by the ML-NIDS using RF. Specifically,

Fig.4a reports the 𝑡𝑝𝑟 , whereas Fig. 4b reports the total misclas-
sifications: such a twofold perspective (an absolute number and

a percentage) allows one to appreciate what is happening at the

micro level. We consider results on Artemis because it consistently

yielded near-zero 𝑡𝑝𝑟 by the Artemis-specific classifier (§5.2).

Analysis. First, we see that the defense always helps in this case

(the 𝑡𝑝𝑟 are always superior). Then, we see that the Full-binary clas-

sifier is better against our adversarial perturbations on TCP packets:

from Fig. 4b, there are 18k misclassifications for non-adversarial

NetFlows, and only 3.5k for adversarial NetFlows. The situation is

inverted for the ensemble classifier, with 35k evasions due to adver-

sarial NetFlows against only 2k for non-adversarial ones (making

our perturbations very effective!). Both of these claims are validated
with a t-test (𝑝≪0.05). Then, we see that UDP (malicious) NetFlows

are always misclassified by the Artemis-specific classifier: interest-

ingly, the ensemble (which relies also on this classifier) still retains

at least 0.871 𝑡𝑝𝑟 . This phenomenon is due to the 4 other malware-

specific classifiers (i.e., Dridex, Trickster, Trickbot, Wannacry—all of which

have never seen any NetFlow from Artemis during training!), of which

at least one correctly predicted the ground truth of these NetFlows

in the ensemble, leading to a final “malicious” classification.

Interpretation. We attempt to explain these intriguing results

by focusing on the size of the data used to train and test our ML-

NIDS [57]. By observing Table 6b in light of our cutoff date (1 July

2017), only the first trace of Artemis (captured on June 24, 2017) oc-

curred in the “past”, whereas all other occur in the “future”. Hence,

our ML-NIDS had only seen 70% of the 23k NetFlows of Artemis be-

fore being deployed (which still enabled to achieve near-perfect 𝑡𝑝𝑟

on the remaining 30% of the “past” dataset—see Table 1). However,

during “future”, our ML-NIDS received 275k NetFlows from Artemis,

whose variability (due to concept drift) bypassed the Artemis-specific

classifier. In contrast, the full-binary and ensemble classifiers are

trained also on other malicious classes, which boosted the baseline

𝑡𝑝𝑟 . However, these classifiers exhibit a different behaviour against

our perturbations on the NetFlows from Artemis: the ensemble was

more fooled than the full-binary classifier. This is because, over-

all, the malware-specific classifiers of the ensemble had issues in

classifying such NetFlows as malicious: their “fine-grained” per-

spective (each classifier is “aware” only of one type of malware) did

not allow any of such classifiers to be sufficiently confident of the

maliciousness of our adversarial NetFlows. In contrast, the more

“generic” perspective of the Full-binary classifier (which is aware

of all types of malware) induced this detector to consider some of

our adversarially manipulated datapoints as malicious.

6 Discussion and Future Work

We now scrutinize our own contributions, drawing implications

for related literature, and identifying avenues for future work.

Comparisons. As we discussed (§2 and §3.1), we are not aware

of any prior work that considered the same assumptions made in

our evaluation. Some papers (e.g. [9]) considered blind perturba-

tions on CTU13 but in the feature space; Niu et al. [49] considered a

mixed testbed (including also MCFP) but did not apply any perturba-

tion and do not consider a time-aware evaluation. Although [72] try

to assess the impact of concept drift (in a testbed entailing captures

from vastly different networks and short timeframes) while also

envisioning a black-box adversary, the actual attack requires query-

access to the ML-NIDS, and the perturbations are applied in the

feature space—making them not very realistic [8, 53]. Hence, due

to the different underlying assumptions (i.e., testbed, threat model),

we cannot compare our results with prior work: such comparisons

AISec ’24, October 14–18, 2024, Salt Lake City, UT, USA Giovanni Apruzzese, Aurore Fass, and Fabio Pierazzi

would be unfair. Nevertheless, it is factual that the results we ob-

tained (which are statistically validated) portray a substantially

different reality than what was concluded in prior work.

Goal (and Extensions). The primary goal of our “open-problem”

paper is to fairly investigate what happens when blind adversarial

perturbations are used to evade an ML-NIDS under the impact of

concept drift—which is a realistic setting for ML-NIDS that has not

been explored before (§2.1).We are not interested in (a) “outperform-

ing” prior work, or (b) “breaking” existing systems. We leave the

development of a “solution” to this problem to future work—which
is facilitated by our open-source code and detailed results [3]. There

are virtually infinite ways to carry out an exploratory analysis to

reach our goal. For instance, we could have considered another

cutoff date; or different malicious classes; or more types of ML al-

gorithms;
12

or feature sets/NetFlow exporters (e.g., Zeek [49]). We

could also have: integrated some mechanism to mitigate concept

drift (e.g., [5, 57, 75]—but doing so would violate our threat model!);

or applied different adversarial manipulations; or used different

defenses (e.g., adversarial training [6]). Our fully-documented and

open-source tools [3], nonetheless, allow future research to inves-

tigate all of these additional contexts. Indeed, reproducing such

contexts is trivial with our tools: our packet modifier (§4.1) can be

used to craft different problem-space perturbations; the resulting

PCAP trace can then be processed with different NetFlow exporters,

leading to different feature representations. Moreover, changing

the cutoff-date is a one-liner in our code: such a change can allow

one to investigate the performance of the resulting model over

longer or shorter timespans.
13

Finally, the “open problem” tackled

in our paper should serve as an inspiration to (i) study the effects

of previously proposed mechanisms to counter concept drift by ac-

counting for longer timespans (e.g., [5, 75] consider only one week);

or (ii) attempt to further explain our results (as done in [33, 47]).

Lessons Learned. We derive three relevant implications for fu-

ture endeavours. (1) The MCFP dataset and our custom resources [3]

can be used by future research for realistic concept-drift and/or

problem-space assessments of adversarial perturbations in ML-

NIDS contexts. (2) Overall, blind perturbations (when applied on

raw network traffic and in the presence of concept drift) can de-

crease the 𝑡𝑝𝑟 of state-of-the-art ML-NIDS. However, some pertur-

bations have no effect, or can be detrimental to the attacker. We

endorse future work to consider game-theory approaches [64]: by

modeling this scenario as a “win/lose” game, it may be possible to

find the optimal solution (i.e., the one that leads to higher chances

of winning for any given “player”). (3) Statistical tests are pivotal to

make sound claims. For instance, in some cases our perturbations

lowered the 𝑡𝑝𝑟 , but the impact was not statistically significant (i.e.,

𝑝 > 0.05). Yet, we are not aware of any prior work on concept drift in

the NIDS context whose claims were validated via statistical tests.

We suggest future work to repeat their experiments multiple times

and derive statistically sound conclusions.
14

12

Wedid experiments also on deep-learning classifiers: they required 100x the training

time and yielded inferior performance than RF and HGB—so we excluded these.

13

Our exploratory analysis covers a variety of use cases from a temporal perspective.

From Table 6, we see that the “future” datapoints of some pieces of malware (e.g., Dridex,
Trickbot, Trickster) occur more than 6 months after the model was trained; whereas for

others (e.g., Wannacry, Artemis) this temporal window is much shorter.

14

We show how to carry out these verifications in a 40s video (included in our repo [3]).

7 Conclusions

We carried out a realistic assessment of state-of-the-art ML tech-

niques for NIDS when they are simultaneously subject to concept

drift and “blind” adversarial ML attacks. Our envisioned attacker is

more constrained than the one of most prior work, but our adver-

sarial perturbations still degrade the performance of the ML-NIDS.

Plus, a defense deemed practical against perturbations in the feature

space is underwhelming in our considered scenario.

Altogether, our paper highlights that research on concept drift in

ML-NIDS contexts is a much more “open problem” than what may

have appeared: our contributions serve as a stepping stone to re-

assess these intriguing phenomena, which are of pivotal importance

for real-world deployments of ML in NIDS.

Acknowledgement

We thank the reviewers for the feedback. This research was funded

by the EPSRC Grant EP/X015971/1 and by Hilti.

References

[1] 2021. MCFP. https://www.stratosphereips.org/datasets-malware.

[2] 2024. Class B Network. service.snom.com/display/wiki/IP+address+classes.

[3] 2024. Our Repository. https://github.com/hihey54/aisec24.

[4] Bushra A Alahmadi, Louise Axon, and Ivan Martinovic. 2022. 99% False Positives:

A Qualitative Study of SOC Analysts’ Perspectives on Security Alarms. In USENIX
Security.

[5] Giuseppina Andresini, Feargus Pendlebury, Fabio Pierazzi, Corrado Loglisci,

Annalisa Appice, and Lorenzo Cavallaro. 2021. INSOMNIA: Towards Concept-

drift Robustness in Network Intrusion Detection. In ACM AISec.
[6] Giovanni Apruzzese, Hyrum Anderson, Savino Dambra, David Freeman, Fabio

Pierazzi, and Kevin Roundy. 2023. “Real Attackers Don’t Compute Gradients”:

Bridging the Gap Between Adversarial ML Research and Practice. In IEEE SaTML.
[7] Giovanni Apruzzese, Mauro Andreolini, Michele Colajanni, and Mirco Marchetti.

2020. Hardening random forest cyber detectors against adversarial attacks. IEEE
TETCI (2020).

[8] Giovanni Apruzzese, Mauro Andreolini, Luca Ferretti, Mirco Marchetti, and

Michele Colajanni. 2021. Modeling Realistic Adversarial Attacks against Network

Intrusion Detection Systems. ACM DTRAP (2021).

[9] Giovanni Apruzzese and Michele Colajanni. 2018. Evading botnet detectors based

on flows and Random Forest with adversarial samples. In IEEE NCA.
[10] Giovanni Apruzzese, Pavel Laskov, Edgardo Montes de Oca, Wissam Mallouli,

Luis Búrdalo Rapa, Athanasios Vasileios Grammatopoulos, and Fabio Di Franco.

2022. The Role of Machine Learning in Cybersecurity. ACM DTRAP (2022).

[11] Giovanni Apruzzese, Pavel Laskov, and Johannes Schneider. 2023. SoK: Pragmatic

Assessment of Machine Learning for Network Intrusion Detection. In EuroS&P.
[12] Giovanni Apruzzese, Aliya Tastemirova, and Pavel Laskov. 2022. SoK: The Impact

of Unlabelled Data in Cyberthreat Detection. In IEEE EuroS&P.
[13] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, Fabio

Pierazzi, Christian Wressnegger, Lorenzo Cavallaro, and Konrad Rieck. 2022. Dos

and Don’ts of Machine Learning in Computer Security. In USENIX Security.
[14] Federico Barbero, Feargus Pendlebury, Fabio Pierazzi, and Lorenzo Cavallaro.

2022. Transcending transcend: Revisiting malware classification in the presence

of concept drift. In IEEE S&P.
[15] Battista Biggio and Fabio Roli. 2018. Wild patterns: Ten years after the rise of

adversarial machine learning. Elsevier Pattern Recogn. (2018).
[16] Branislav Bosansky, Lada Hospodkova, Michal Najman, Maria Rigaki, Elnaz

Babayeva, and Viliam Lisy. 2024. Counteracting Concept Drift by Learning with

Future Malware Predictions. arXiv:2404.09352 (2024).
[17] Emilie Bout, Valeria Loscri, and Antoine Gallais. 2021. How machine learning

changes the nature of cyberattacks on IoT networks: A survey. IEEE COMST
(2021).

[18] Tobias Braun, Irdin Pekaric, and Giovanni Apruzzese. 2024. Understanding the

Process of Data Labeling in Cybersecurity. In SAC.
[19] Marta Catillo, Antonio Pecchia, and Umberto Villano. 2023. Machine Learning

on Public Intrusion Datasets: Academic Hype or Concrete Advances in NIDS?. In

IEEE DSN.
[20] Romain Cayre, Vincent Nicomette, Guillaume Auriol, Mohamed Kaâniche, and

Aurélien Francillon. 2024. OASIS: An Intrusion Detection System Embedded in

Bluetooth Low Energy Controllers. In ACM AsiaCCS.
[21] Antonio Emanuele Cinà, Kathrin Grosse, Ambra Demontis, Sebastiano Vascon,

Werner Zellinger, Bernhard A Moser, Alina Oprea, Battista Biggio, Marcello

https://www.stratosphereips.org/datasets-malware
https://service.snom.com/display/wiki/IP+address+classes
https://github.com/hihey54/aisec24

When Adversarial Perturbations meet Concept Drift: an Exploratory Analysis on ML-NIDS AISec ’24, October 14–18, 2024, Salt Lake City, UT, USA

Pelillo, and Fabio Roli. 2023. Wild patterns reloaded: A survey of machine

learning security against training data poisoning. ACM CSUR (2023).

[22] Henry Clausen, Gudmund Grov, and David Aspinall. 2021. Cbam: A contextual

model for network anomaly detection. Computers (2021).
[23] Igino Corona, Giorgio Giacinto, and Fabio Roli. 2013. Adversarial attacks against

intrusion detection systems: Taxonomy, solutions and open issues. Inf. Sci. (2013).
[24] Luca Demetrio, Scott E Coull, Battista Biggio, Giovanni Lagorio, Alessandro

Armando, and Fabio Roli. 2021. Adversarial exemples: A survey and experimen-

tal evaluation of practical attacks on machine learning for windows malware

detection. ACM TOPS (2021).
[25] Marius Dragoi, Elena Burceanu, Emanuela Haller, Andrei Manolache, and Florin

Brad. 2022. AnoShift: A distribution shift benchmark for unsupervised anomaly

detection. NeurIPS (2022).
[26] Juliette Dromard and Philippe Owezarski. 2020. Study and evaluation of unsu-

pervised algorithms used in network anomaly detection. In FTC.
[27] Gints Engelen, Vera Rimmer, and Wouter Joosen. 2021. Troubleshooting an

intrusion detection dataset: the CICIDS2017 case study. In IEEE S&PW.

[28] Sebastian Garcia, Martin Grill, Jan Stiborek, and Alejandro Zunino. 2014. An

empirical comparison of botnet detection methods. Comput. Secur. (2014).
[29] Dongqi Han, Zhiliang Wang, Wenqi Chen, Kai Wang, Rui Yu, Su Wang, Han

Zhang, Zhihua Wang, Minghui Jin, Jiahai Yang, et al. 2023. Anomaly Detection

in the Open World: Normality Shift Detection, Explanation, and Adaptation. In

NDSS.
[30] Dongqi Han, Zhiliang Wang, Ying Zhong, Wenqi Chen, Jiahai Yang, Shuqiang Lu,

Xingang Shi, and Xia Yin. 2021. Evaluating and improving adversarial robustness

of machine learning-based network intrusion detectors. IEEE J. Selected Areas in
Communications (2021).

[31] Ke He, Dan Dongseong Kim, and Muhammad Rizwan Asghar. 2023. Adversarial

machine learning for network intrusion detection systems: a comprehensive

survey. IEEE COMST (2023).

[32] Thomas Hutzelmann, Dominik Mauksch, Ana Petrovska, and Alexander

Pretschner. 2023. Generation of Tailored and Confined Datasets for IDS Evalua-

tion in Cyber-Physical Systems. IEEE TDSC (2023).

[33] Arthur S Jacobs, Roman Beltiukov, Walter Willinger, Ronaldo A Ferreira, Arpit

Gupta, and Lisandro Z Granville. 2022. AI/ML for Network Security: The Emperor

has no Clothes. In ACM CCS.
[34] Xi Jiang, Shinan Liu, Aaron Gember-Jacobson, Arjun Nitin Bhagoji, Paul Schmitt,

Francesco Bronzino, and Nick Feamster. 2024. NetDiffusion: Network Data

Augmentation Through Protocol-Constrained Traffic Generation. ACM MACS
(2024).

[35] Roberto Jordaney, Kumar Sharad, Santanu K Dash, Zhi Wang, Davide Papini, Ilia

Nouretdinov, and Lorenzo Cavallaro. 2017. Transcend: Detecting concept drift in

malware classification models. In USENIX Security.
[36] Zilong Lin, Yong Shi, and Zhi Xue. 2022. Idsgan: Generative adversarial networks

for attack generation against intrusion detection. In PAKDD.
[37] Lisa Liu, Gints Engelen, Timothy Lynar, Daryl Essam, and Wouter Joosen. 2022.

Error Prevalence in NIDS datasets: A Case Study on CIC-IDS-2017 and CSE-CIC-

IDS-2018. In IEEE CNS.
[38] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and Guangquan Zhang. 2018.

Learning under concept drift: A review. IEEE TKDE (2018).

[39] Nuno Martins, José Magalhães Cruz, Tiago Cruz, and Pedro Henriques Abreu.

2020. Adversarial Machine Learning applied to Intrusion and Malware Scenarios:

a systematic review. IEEE Access (2020).
[40] Vinicius Eiji Martins, Alberto Cano, and Sylvio Barbon Junior. 2023. Meta-

learning for dynamic tuning of active learning on stream classification. Pattern
Recognition (2023).

[41] Jovana Mijalkovic and Angelo Spognardi. 2022. Reducing the false negative rate

in deep learning based network intrusion detection systems. Algorithms (2022).
[42] Brad Miller, Alex Kantchelian, Sadia Afroz, Rekha Bachwani, Edwin Dauber,

Ling Huang, Michael Carl Tschantz, Anthony D Joseph, and J Doug Tygar. 2014.

Adversarial active learning. In ACM AISec.
[43] Céline Minh, Kevin Vermeulen, Cédric Lefebvre, Philippe Owezarski, andWilliam

Ritchie. 2023. An explainable-by-design ensemble learning system to detect

unknown network attacks. In CNSM.

[44] JaronMink, Hadjer Benkraouda, Limin Yang, Arridhana Ciptadi, Ali Ahmadzadeh,

Daniel Votipka, and Gang Wang. 2023. Everybody’s Got ML, Tell Me What Else

You Have: Practitioners’ Perception of ML-Based Security Tools and Explanations.

In IEEE S&P.
[45] Omid Mirzaei, Guillermo Suarez-Tangil, Jose M de Fuentes, Juan Tapiador, and Gi-

anluca Stringhini. 2019. Andrensemble: Leveraging api ensembles to characterize

android malware families. In ACM AsiaCCS.
[46] Deepa Mulimani, Shashikumar G Totad, Prakashgoud Patil, and Shivananda V

Seeri. 2021. Adaptive ensemble learning with concept drift detection for intrusion

detection. In ICICC.
[47] Azqa Nadeem, Daniël Vos, Clinton Cao, Luca Pajola, Simon Dieck, Robert Baum-

gartner, and Sicco Verwer. 2023. Sok: Explainable machine learning for computer

security applications. In IEEE EuroS&P.

[48] Milad Nasr, Alireza Bahramali, and Amir Houmansadr. 2021. Defeating DNN-

Based Traffic Analysis Systems in Real-Time With Blind Adversarial Perturba-

tions. In USENIX Security.
[49] Zequn Niu, Jingfeng Xue, Dacheng Qu, Yong Wang, Jun Zheng, and Hongfei Zhu.

2022. A novel approach based on adaptive online analysis of encrypted traffic

for identifying Malware in IIoT. Inf. Sci. (2022).
[50] Philippe Owezarski. 2023. Investigating adversarial attacks against Random

Forest-based network attack detection systems. In IEEE NOMS.
[51] Marc-Oliver Pahl and François-Xavier Aubet. 2018. All eyes on you: Distributed

Multi-Dimensional IoT microservice anomaly detection. In IEEE CNSM.

[52] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and

Lorenzo Cavallaro. 2019. TESSERACT: Eliminating experimental bias in malware

classification across space and time. In USENIX Security.
[53] Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortellazzi, and Lorenzo Cavallaro.

2020. Intriguing Properties of Adversarial ML Attacks in the Problem Space. In

IEEE S&P.
[54] Maura Pintor, Luca Demetrio, Angelo Sotgiu, Ambra Demontis, Nicholas Carlini,

Battista Biggio, and Fabio Roli. 2022. Indicators of attack failure: Debugging and

improving optimization of adversarial examples. NeurIPS (2022).
[55] Michal Piskozub, Riccardo Spolaor, Mauro Conti, and Ivan Martinovic. 2019. On

the resilience of network-based moving target defense techniques against host

profiling attacks. Wmtd (2019).

[56] QoSient. 2012. Argus NetFlow. https://qosient.com/argus/argusnetflow.shtml.

[57] William K Robertson, Federico Maggi, Christopher Kruegel, Giovanni Vigna,

et al. 2010. Effective Anomaly Detection with Scarce Training Data.. In NDSS.
[58] SANS. 2023. 2023 SOC Survey. Technical Report.
[59] Giorgio Severi, Simona Boboila, Alina Oprea, John Holodnak, Kendra Kratkiewicz,

and Jason Matterer. 2023. Poisoning Network Flow Classifiers. In ACSAC.
[60] Giorgio Severi, Jim Meyer, Scott Coull, and Alina Oprea. 2021. Explanation-

Guided backdoor poisoning attacks against malware classifiers. In USENIX Sec.
[61] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. 2018. Toward Gen-

erating a New Intrusion Detection Dataset and Intrusion Traffic Characterization.

In ICISSP.
[62] Anshuman Singh, Andrew Walenstein, and Arun Lakhotia. 2012. Tracking

concept drift in malware families. In ACM AISec.
[63] Robin Sommer and Vern Paxson. 2010. Outside the closed world: On using

machine learning for network intrusion detection. In IEEE S&P.
[64] Guoxin Sun, Tansu Alpcan, Seyit Camtepe, Andrew C Cullen, and Benjamin IP

Rubinstein. 2023. An Adversarial Strategic Game for Machine Learning as a

Service using System Features.. In AAMAS.
[65] Fnu Suya, Anshuman Suri, Tingwei Zhang, Jingtao Hong, Yuan Tian, and David

Evans. 2024. Sok: Pitfalls in evaluating black-box attacks. In IEEE SaTML.
[66] Thijs Van Ede, Hojjat Aghakhani, Noah Spahn, Riccardo Bortolameotti, Marco

Cova, Andrea Continella, Maarten van Steen, Andreas Peter, Christopher Kruegel,

and Giovanni Vigna. 2022. Deepcase: Semi-supervised contextual analysis of

security events. In IEEE S&P.
[67] Mathew Vermeer, Michel Van Eeten, and Carlos Gañán. 2022. Ruling the rules:

Quantifying the evolution of rulesets, alerts and incidents in network intrusion

detection. In ACM AsiaCCS.
[68] Nikos Virvilis and Dimitris Gritzalis. 2013. The big four-what we did wrong in

advanced persistent threat detection?. In ARES.
[69] Gernot Vormayr, Joachim Fabini, and Tanja Zseby. 2020. Why are my flows

different? A tutorial on flow exporters. IEEE COMST (2020).

[70] Omar Abdel Wahab. 2022. Intrusion detection in the iot under data and concept

drifts: Online deep learning approach. IEEE IoT J. (2022).
[71] Ning Wang, Yimin Chen, Yang Xiao, Yang Hu, Wenjing Lou, and Y Thomas Hou.

2022. Manda: On adversarial example detection for network intrusion detection

system. IEEE TDSC (2022).

[72] Xian Wang. 2022. ENIDrift: A Fast and Adaptive Ensemble System for Network

Intrusion Detection under Real-world Drift. In ACSAC.
[73] Di Wu, Binxing Fang, Junnan Wang, Qixu Liu, and Xiang Cui. 2019. Evading

machine learning botnet detection models via deep reinforcement learning. In

IEEE ICC.
[74] Anli Yan, Zhenxiang Chen, Riccardo Spolaor, Shuaishuai Tan, Chuan Zhao, Lizhi

Peng, and Bo Yang. 2020. Network-based malware detection with a two-tier

architecture for online incremental update. In IWQoS.
[75] Limin Yang, Wenbo Guo, Qingying Hao, Arridhana Ciptadi, Ali Ahmadzadeh,

Xinyu Xing, and Gang Wang. 2021. CADE: Detecting and explaining concept

drift samples for security applications. In USENIX Security.
[76] Valentina Zantedeschi, Maria-Irina Nicolae, and Ambrish Rawat. 2017. Efficient

defenses against adversarial attacks. In ACM AISec.
[77] Chaoyun Zhang, Xavier Costa-Perez, and Paul Patras. 2022. Adversarial attacks

against deep learning-based network intrusion detection systems and defense

mechanisms. TON (2022).

[78] Ying Zhong, Yiran Zhu, Zhiliang Wang, Xia Yin, Xingang Shi, and Keqin Li. 2020.

An adversarial learning model for intrusion detection in real complex network

environments. WASA (2020).

https://qosient.com/argus/argusnetflow.shtml

AISec ’24, October 14–18, 2024, Salt Lake City, UT, USA Giovanni Apruzzese, Aurore Fass, and Fabio Pierazzi

Table 5: Benign PCAP traces from MCFP, containing “background” and “active” traffic.

Trace

(Link)

Date

PCAP

Size(B)

Flows

Total

1 17 Dec 2013 400M 10K

2 17 Dec 2013 800M 10K

3 24 Mar 2015 1M 3K

4 13 Sept 2016 0.6M 40

5 13 Sept 2016 0.6M 50

6 13 Sept 2016 0.5M 40

7 18 Apr 2017 280M 18K

8 19 Apr 2017 200M 7.8K

9 25 Apr 2017 480M 7.8K

10 26 Apr 2017 110M 16K

11 30 Apr 2017 270M 21K

12 30 Apr 2017 424M 39K

13 1 May 2017 137M 12K

14 1 May 2017 435M 35K

15 1 May 2017 800M 55K

16 1 May 2017 725M 60K

17 2 May 2017 300M 15K

18 2 May 2017 1.6G 102K

19 2 May 2017 822M 82K

20 3 Jul 2017 0.5M 34

21 23 Jul 2017 400M 6.2K

22 5 Sept 2017 16M 1K

23 7 May 2018 300M 4.9K

(a) Recent benign traces (active).

Trace

(Link)

Date

PCAP

Size(B)

Flows

Total

Nature

42 10 Aug 2011 6.1G

4M Background

35K Active

43 11 Aug 2011 6.2G

2.5M Background

10K Active

44 12 Aug 2011 14.5G

5M Background

113K Active

45 15 Aug 2011 5.4G

1.4M Background

30K Active

46 15 Aug 2011 0.4G

150K Background

5K Active

54 16 Aug 2011 4.4G

2.1M Background

28K Active

50 17 Aug 2011 9.8G

2.6M Background

35K Active

52 18 Aug 2011 0.6G

113K Background

2.8K Active

(b) Traces from CTU13.

Table 6: Malicious PCAP traces from MCFP used in our assessment (we will perturb these). Note: the most recent traces in MCFP are collected in 2021.

We provide an explanation of the method used to choose these traces in our supplementary document [3].

𝑚
Trace

(Link)

Date

PCAP

Size(B)

Flows

Total

W
an

na
cr

y

1 14 May 2017 500K 5K

2 14 May 2017 11M 15K

3 15 May 2017 3.6M 171

4 15 May 2017 13M 32K

5 24 Jun 2017 444M 9K

6 11 Jul 2017 1.6M 14K

7 11 Jul 2017 7.6M 14K

8 11 Jul 2017 7.3M 13K

9 11 Jul 2017 7.1M 11K

10 11 Jul 2017 6.8M 9.3K

11 11 Jul 2017 3.1M 35

12 11 Jul 2017 6.3M 4K

13 11 Jul 2017 14M 17K

14 12 Jul 2017 6.1M 3.6K

15 13 Jul 2017 6.2M 210

16 13 Jul 2017 6.8M 11K

17 13 Jul 2017 6.7M 10K

D
rid

ex

1 13 Feb 2017 79M 102

2 27 Feb 2017 57M 2.5K

3 11 Apr 2017 31M 51K

4 18 Apr 2017 66M 30K

5 18 Apr 2017 47M 35K

6 15 May 2017 7.4M 43K

7 15 May 2017 33M 48K

8 16 May 2017 52M 63K

9 24 Jun 2017 16M 11K

10 29 Jan 2018 310M 73K

11 30 Jan 2018 193M 37K

12 03 Apr 2018 223M 52K

(a) More recent traces (part 1).

𝑚
Trace

(Link)

Date

PCAP

Size(B)

Flows

Total

Ar
te

m
is

1 24 Jun 2017 37M 23K

2 1 Aug 2017 336M 30K

3 14 Aug 2017 772M 226K

4 16 Aug 2017 153M 11K

5 16 Aug 2017 146M 10K

Tr
ic

ks
te

r 1 24 Jun 2017 52M 24K

2 3 Aug 2017 6.4M 2K

3 29 Jan 2018 252M 63K

Tr
ic

kb
ot

1 29 Mar 2017 83M 40K

2 30 Mar 2017 90M 41K

3 30 Mar 2017 90M 41K

4 30 Mar 2017 81M 38K

5 12 Apr 2017 288M 160K

6 12 Apr 2017 115M 53K

7 17 Apr 2017 142M 103K

8 8 May 2017 214M 127K

9 15 May 2017 204M 79K

10 7 Jun 2017 211M 124K

11 15 Jun 2017 228M 141K

12 24 Jun 2017 77M 31K

13 24 Jun 2017 76M 33K

14 24 Jun 2017 78M 31K

15 24 Jun 2017 44M 27K

16 30 Jan 2018 33M 13K

17 30 Jan 2018 212M 62K

18 2 Feb 2018 197M 59K

19 27 Mar 2018 410M 122K

20 30 Jul 2021 100K 61

(b) More recent traces (part 2).

𝑚
Trace

(Link)

Date

PCAP

Size(B)

Flows

Total

N
er

is

1 10 Aug 2011 56M 42K

2 11 Aug 2011 35M 23K

3 17 Aug 2011 1G 188K

R
bo

t

1 12 Aug 2011 123M 40K

2 15 Aug 2011 212M 0.8K

3 18 Aug 2011 4G 8.8K

Vi
ru

t 1 15 Aug 2011 30M 0.9K

2 16 Aug 2011 110M 41K

(c) Traces from CTU13.

Appendix A What are NetFlows?

NetFlows are metadata that provide high-level statistics on a set

of packets having: same source and destination hosts, same source

and destination ports, and same protocol. Depending on the specific

implementation, various information (i.e., the “features” that can be

used for ML-based analyses) can be extracted in any given NetFlow

(e.g., total number of packets or bytes exchanged, or duration of

the communication). For more details, see [11, 69].

https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-7/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-12/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-4-only-DNS/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-8-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-8-2/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-9/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-23/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-24/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-25/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-26/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-20/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-27/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-28/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-29/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-30/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-31/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-21/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-22/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-32/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-13/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-14/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-18/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-33/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-42/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-43/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-44/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-45/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-46/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-54/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-50/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-52/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-252-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-253-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-254-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-256-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-270-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-283-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-284-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-285-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-286-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-287-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-290-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-292-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-295-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-293-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-294-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-296-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-297-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-218-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-228-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-251-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-248-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-249-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-259-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-260-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-257-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-263-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-322-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-326-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-346-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-275-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-306-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-305-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-311-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-316-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-277-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-302-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-323-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-240-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-238-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-239-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-242-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-243-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-244-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-247-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-261-3/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-261-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-261-2/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-261-4/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-265-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-266-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-267-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-273-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-324-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-325-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-327-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-327-2/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-405-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-42
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-43/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-50/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-44/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-45/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-52/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-46/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-54/

	Abstract
	1 Introduction
	2 Preliminaries and Scope
	2.1 Background and Related Work
	2.2 Threat Model (adv. perturbations + concept drift)

	3 Data Preparation (a ``how to'' guide)
	3.1 Challenge: Finding the right data
	3.2 A (open source) solution: the MCFP dataset
	3.3 Practically using MCFP data (our testbed)

	4 Experiment Setup & Implementation
	4.1 ``Blind'' Adv. Perturbations on Raw Traffic
	4.2 Preprocessing and Machine Learning
	4.3 Case Studies (malicious NetFlow detection)

	5 Exploratory Analysis
	5.1 Verification Experiment (is our testbed valid?)
	5.2 Attack Evaluation (do ``blind'' perturbations work?)
	5.3 Low-level Analysis (phenomena and explanations)

	6 Discussion and Future Work
	7 Conclusions
	References
	Appendices
	Appendix A What are NetFlows?

