
1

GLYPH: Efficient ML-based Detection of
Heap Spraying Attacks

Fabio Pierazzi∗, Stefano Cristalli†, Danilo Bruschi†, Michele Colajanni‡, Mirco Marchetti‡, Andrea Lanzi†
∗King’s College London, UK – fabio.pierazzi@kcl.ac.uk

†University of Milan, Italy – {stefano.cristalli, danilo.bruschi, andrea.lanzi}@unimi.it
‡University of Modena and Reggio Emilia, Italy – {michele.colajanni, mirco.marchetti}@unimore.it

Abstract—Heap spraying is probably the most simple and
effective memory corruption attack, which fills the memory
with malicious payloads and then jumps at a random location
in hopes of starting the attacker’s routines. To counter this
threat, GRAFFITI has been recently proposed as the first OS-
agnostic framework for monitoring memory allocations of arbi-
trary applications at runtime; however, the main contributions of
GRAFFITI are on the monitoring system, and its detection engine
only considers simple heuristics which are tailored to certain
attack vectors and are easily evaded. In this paper, we aim to
overcome this limitation and propose GLYPH as the first ML-
based heap spraying detection system, which is designed to be
effective, efficient, and resilient to evasive attackers. GLYPH relies
on the information monitored by GRAFFITI, and we investigate
the effectiveness of different feature spaces based on information
entropy and memory n-grams, and discuss the several engineering
challenges we have faced to make GLYPH efficient with an
overhead compatible with that of GRAFFITI. To evaluate GLYPH,
we build a representative dataset with several variants of heap
spraying attacks, and assess GLYPH’s resilience against evasive
attackers through selective hold-out experiments. Results show
that GLYPH achieves high accuracy in detecting spraying and
is able to generalize well, outperforming the state-of-the-art
approach for heap spraying detection, NOZZLE. Finally, we
thoroughly discuss the trade-offs between detection performance
and runtime overhead of GLYPH’s different configurations.

Keywords—heap spraying; memory exploitation; machine learn-
ing; memory monitoring; detection.

I. INTRODUCTION

Memory corruption vulnerabilities are currently one of the
biggest threats to software and information security. In this
field, we have witnessed a constant arms race over the past
decade, with system designers of compilers and operating
systems on one side, and attackers on the other. Over the
years, the former have introduced many new security features
to increase the complexity of exploiting memory corruption
vulnerabilities [8, 13, 46, 47, 57]. This list includes stack
canaries [18], data execution prevention (DEP), Address Space
Layout Randomization (ASLR) [9, 34], and Control Flow
Integrity [3] just to cite some of the most popular solutions.

ASLR is certainly one of the most common and successful
techniques adopted by modern operating systems due to its
relatively high performance and low overhead. Among several
attacks against such a defense mechanism, the most simple and
effective one is to fill the memory with tens of thousands of

identical copies of the same malicious code, and then jump to a
random memory page, hoping to land in one of the pre-loaded
memory areas. This makes this payload delivery technique,
called spraying, one of the key elements used in most of the
recent memory corruption exploits [23, 26].

Researchers have been looking for approaches to mitigate
this technique. Unfortunately, the few solutions proposed so
far [e.g., 22, 24, 53] were all tailored to defend a particular
application (typically the JavaScript interpreter in Internet Ex-
plorer) using a given memory allocator in a specific operating
system, and against a single form of heap spraying. This made
these solutions difficult to port to other environments, and
unable to cope with all possible variations of heap spraying
attacks. In fact, the original heap spraying attack is now just
the tip of the iceberg. The technique has rapidly evolved in
different directions, for example by taking advantage of Just
In Time (JIT) compilers [26], focusing on the allocation of
pools in the OS kernel, or relying on stack pivoting to spray
data instead of code [51].

Recently, GRAFFITI [19] has been proposed as a hypervisor-
based memory monitoring solution to aid detection and preven-
tion of all known variations of spraying attacks. In particular,
by leveraging a novel micro-virtualization technique, this sys-
tem proposes an efficient OS-agnostic framework to monitor
memory allocations of arbitrary applications. GRAFFITI offers
the first general and portable solution for efficiently monitoring
the memory behavior; the system is modular, and relies on
a set of plugins to detect suspicious patterns in memory at
runtime. However, the detection heuristics provided in the
original paper [19] are just an example for the use of the
GRAFFITI system, and they do not provide any generic defense
since they are very specific to a particular attack vector and
are trivial to evade. Indeed, as the authors of [19] highlight,
the proposed detection heuristics were not part of the main
contributions, which instead focused on designing a framework
for efficiently tracking the memory page allocation.

In this paper, we propose GLYPH as an extension of the de-
tection engine of GRAFFITI [19]. In particular, we investigate
the problem of designing resilient detection techniques against
heap spraying attacks. To this end, we evaluate whether ma-
chine learning techniques can effectively detect heap spraying
by monitoring memory pages at runtime.

To perform our analysis, we generate representative memory
dumps of benign and malicious processes. We conduct our
experiments on Windows 7 (32-bit) and Internet Explorer

11, and generate a dataset by running and dumping a total
of 175 benign processes dumps, 160 malicious (sprayed)
processes and 80 mixed (benign+malicious navigation) with
different settings, including a mix of manual and automated
Web navigations. In particular, we analyze the effectiveness of
feature spaces based on memory n-grams and on information
entropy: we compare the two methods, by using representative
ML algorithms applied to the context of spraying attacks in
memory.

Our results show that there is a trade-off between the runtime
overhead and the effectiveness of the two feature spaces:
entropy features are faster and more agnostic, but slightly less
precise; n-grams are slower to compute and require some a
priori attack knowledge, but are more effective for detection.
To avoid overfitting and show the resilience of our system
against spraying attacks we also perform selective hold-out
experiments that simulate an adaptive attacker using different
spray variants. Finally, we show how our machine learning
techniques outperform NOZZLE [53], a state-of-the-art heap
spraying detection mechanism.

In summary, we extend the original paper of GRAFFITI [19]
and make the following novel contributions:
• We propose GLYPH, which is—to the best of our

knowledge—the first system to explore the use of ML
techniques for heap spraying detection. GLYPH extracts
features from the page-level runtime memory monitoring
of GRAFFITI [19]. We present solutions to several de-
sign and implementation challenges we have tackled to
choose the appropriate ML algorithms and feature spaces
in order to make GLYPH accurate in its detection, while
containing its runtime overhead (§III).

• We build a representative dataset featuring a comprehen-
sive set of heap spraying attack vectors and scenarios
(§IV). On this, we perform a thorough experimental
evaluation, which considers also mimicry and evasive
attack vectors, to identify two optimal configurations
of GLYPH which offer a trade-off between runtime
overhead and detection performance (§V): one based on
memory n-grams, slower and requiring some a priori
attack knowledge, but more effective; one based on
entropy, faster and more agnostic (i.e., not requiring a
priori knowledge), but less precise.

• We experimentally show that the two best configurations
of GLYPH outperform NOZZLE [53], the state-of-the-
art system for heap spraying detection, in terms of both
detection performance and runtime overhead (§V-F).

The remainder of the paper is structured as follows. Sec-
tion II discusses some background information on heap spray-
ing and the GRAFFITI framework [19]. Section III describes the
design of GLYPH, along with detailed reasoning for the choice
of the feature spaces and ML algorithms evaluated. Section IV
shows how we create a representative dataset of heap spraying
attacks for our evaluations. Section V presents the thorough
experimental evaluation, which considers also attackers using
evasive variants of heap spraying attacks, and compares the
performance of GLYPH with respect to the state of the art.
Section VI presents a discussion on main findings and some
limitations of our analysis. Section VII compares GLYPH with

related work, and Section VIII discusses conclusions and future
work.

II. BACKGROUND

Heap spraying is a payload delivery technique that was
publicly used for the first time in 2001 in the telnetd re-
mote root exploit [44] and in the eEye’s ISS AD20010618
exploit [40]. The technique became popular in 2004 as a way
to circumvent Address Space Layout Randomization (ASLR)
in a number of exploits for Internet Explorer. Since 2004,
spraying attacks have evolved and became more reliable thanks
to improvements proposed by Sotirov [58] and Daniel et al.
[20] for precise heap manipulation. Spraying can now be
classified into two main categories, based on the protection
mechanisms in place on the target machine: Code Spraying
and Data Spraying. If Data Execution Prevention (DEP) is
not enabled, the attacker can perform the exploit by directly
spraying the malicious code (e.g., the shellcode) into the victim
process memory. On the other hand, when the system uses
DEP protection, the attacker would not be able to execute the
injected code. To overcome this problem, two main approaches
have been proposed: (a) perform the heap spraying by taking
advantage of components that are not subjected to DEP, such as
Just in Time (JIT) compilers, or (b) inject plain data that points
to Return Oriented Programming (ROP) gadgets. While the
internal details between the three aforementioned approaches
may be quite different, what is important for our research is
that all these techniques share the same goal: to control the
target dynamic memory allocation in order to obtain a memory
layout that allows arbitrary code execution in a reliable way.

It is important to note that spraying is still a valuable
technique in x86 64-based operating systems as well. In
particular, this is the case for use-after-free vulnerabilities—but
spraying can still be used in conjunction with vulnerabilities
in the ASLR implementation [16] or other particular vulner-
abilities [e.g., 23], or because of the wide adoption of 32-bit
processes in 64-bit operating systems (as recently shown by
Skylined [56]).

Our research devises an ML-based detection engine, GLYPH,
that can be embedded in the GRAFFITI framework for runtime
detection of heap spraying attacks. GRAFFITI [19] is a system
designed to support detection and prevention of spraying
attacks by monitoring individual applications running on any
operating system. GRAFFITI is based on a custom hyper-
visor, implemented using hardware virtualization technolo-
gies, which runs below the operating system, intercepting all
memory allocations performed by programs. These allocations
are constantly monitored, and per-process profiles are built.
Based on heuristics, such as the exceeding of an allocation
threshold over a specified amount of time, GRAFFITI triggers
the detection engine to check for the presence of an attack
pattern. The GRAFFITI system is modular, and relies on a set
of plug-ins to detect suspicious patterns in memory at runtime.
The detection algorithms in GLYPH can be attached as plugins
inside the GRAFFITI framework. The original paper [19] re-
ported only simple detection heuristics that are very trivial to
evade; indeed, its main contributions where on the design of a

2

framework for efficient tracking of memory page allocations.
In this paper, we investigate GLYPH as an extension for the
detection engine of GRAFFITI, for effective and efficient ML-
based heap spraying detection.

III. HEAP SPRAYING DETECTION

There are several design requirements for GLYPH, our
detection system. R1: GLYPH should rely only on the memory
information monitored by GRAFFITI [19]. R2: GLYPH should
provide an efficient detection phase which is feasible to operate
at runtime in the end-user machine, with a system overhead in
line with that of GRAFFITI. R3: GLYPH should be general
in the detection of heap spray attacks, using learning and
features that do not overfit specific spray characteristics. R4:
GLYPH should achieve high detection performance against a
comprehensive dataset of spraying attack vectors.

These requirements have guided the design and evaluation of
GLYPH, and the creation of an appropriate and representative
dataset of memory dumps. In this section, we first provide
a high-level overview of the different features involved in the
detection process, and then we describe the algorithms used by
GLYPH to perform detection of sprayed processes. Section V
will present a thorough evaluation which identifies the best
configurations of GLYPH.

A. Threat Model
We assume that the objective of the attacker is to trick the

victim into opening a compromised Web page with malicious
JavaScript that performs a heap spraying. As attack vector, the
attacker mostly relies on phishing (e.g., a link to the malicious
page in an email or social network message). There is a chance
that a benign website is compromised by the attacker with
stored XSS, so that the heap spraying begins while the victim
visits the benign website.

There are two main settings for our threat model depending
on the victim’s memory context when the click on a malicious
link happens: if a new browser process is opened (e.g., a
new tab, or a new instance of the browser), then the spray
occurs in a newly initialized—clean—process (without bytes
from prior benign navigation); if the link is opened after
some benign navigation of the victim, and an already-opened
browser process is in use (e.g., a new tab is opened with a
new thread), then the spray will occur in a page which already
contains benign navigation history. Browsers like Internet
Explorer create a new process for each newly opened tab,
while others (e.g., Firefox) may either create new processes or
new threads (depending on the amount of memory already in
use by the browser); in general, GRAFFITI cannot distinguish
between the two cases a priori, and hence GLYPH needs to
achieve high detection performance in both scenarios.

We also assume that the attacker will try to evade detection
through multiple orthogonal approaches. Existing metamor-
phic and polymorphic algorithms can automatically generate
pseudo-random attack payloads that easily evade all detectors
based on signatures. Behavioral detection approaches that try
to differentiate between benign Web browsing activities and
heap spraying attacks based on the memory allocation rate can

be evaded by attacks that gradually deploy the heap spraying
payload to mimic the memory allocation rate of a Web browser
that renders legitimate pages [19]. Detectors based on machine
learning approaches can sometimes be fooled by attacks that
manage to include some benign background noise in the
navigation. As an example, consider a malicious script with
a time- or logic-bomb that is triggered only after the victim
has done some benign navigation. Our detector GLYPH is
designed to be resilient against all these mimicry attempts
since it relies on features that are necessarily affected by heap
spraying attacks, the size of which has to be relatively large
by design (in the order of hundreds of megabytes) to achieve
a sufficient success probability of the exploit. In particular, we
also identify the most resilient configurations of GLYPH via
experimental evaluation in §V.

B. Detection Task
We aim to design GLYPH as a system to detect whether

heap spraying is occurring within a monitored process. More
formally, we are interested in a binary classification task in
which the detection algorithm f : X −→ {0, 1} takes a feature
vector xi ∈ X ⊆ Rm extracted from process P as input, and
outputs label ŷ = 1 if the process is being sprayed (or label
ŷ = 0 if the process is clean).

We rely on supervised classification and not on anomaly
detection because we design and build a representative dataset
of memory processes corresponding to benign navigations and
heap spraying attack variants (§IV). It is well known that
supervised classification has better performance than anomaly
detection when a dataset representative of all classes (in our
case, two classes: clean and sprayed) is available [11, 15].
The construction of a representative dataset is also related to
evaluate satisfaction of requirement R4.

Machine learning algorithms mostly work on vector data
as input. Hence, we first define a mapping between a memory
process and a feature space X . Since the heap spraying affects
the process memory, which can be monitored at page-level
by GRAFFITI [19], we extract features from the memory
content (R1). In particular, we model a process as a memory
object divided into pages, where each page is represented as
a sequence of bytes, i.e., integer values between 0 and 255.
We consider bytes because they are the units of assembly
instruction, which will also be the object of spraying attacks.

More formally, the feature embedding ϕ : P −→ X
takes as input a process Pi ∈ P (set of memory pages of
process i, represented as sequences of bytes) and outputs an m-
dimensional feature vector xi ∈ X ⊆ Rm (where m depends
on the specific embedding—as explained later).

As in traditional machine learning [11], a model is learned
for f through training on a set of labeled examples zi =
(xi, yi) corresponding to a process Pi with feature vector xi

(derived from embedding ϕ) and binary label yi (0 if clean,
1 if sprayed). We use machine learning instead of heuristics
and static thresholds [19] in order to learn more complex and
general models that can effectively distinguish between clean
and sprayed processes.

The following subsections describe feature embeddings ϕ
in GLYPH, based on information entropy and n-grams. The

3

Process

Memory
Pages

Entropy
Distribution

[Graffiti]

3-grams

…

Spray 3-grams

…

IE10

Spray
Examples

Fig. 1. Feature extraction overview. GLYPH extracts features for information
entropy and memory byte n-grams from a process monitored by GRAFFITI.

intuition is that these should capture the changes introduced
by heap spraying activity. The major challenge is to design
an embedding that is at the same time fast to compute
(R2), generalizable (R3), and effective in terms of detection
performance (R4).

C. Feature Embedding: Information Entropy

In information theory, entropy is the average rate at which an
information is produced from a stochastic source of data [54].
The intuition to consider entropy-based features is that heap
spraying leaves an anomalous distribution of entropy within
the memory of a process, due to the repetition of both NOP
sleds and spraying of the same shellcode in multiple pages
of the memory. Repetition of the same pattern, such as NOP
sled and shellcode, will reduce the entropy of the process
memory to a value closer to 0; such event does not happen in a
benign process memory page that in general contains different
information.

More formally, to have a value comprised between 0 and 1,
we refer to the following definition of normalized information
entropy corresponding to the memory of a process P ∈ P:

H(P) =
−
∑N

i=1 Pri · logb(Pri)
logb(N)

(1)

where N is the total number of bytes within the memory of
process P , and Pri is the probability of occurrence for the
i-th byte value. For the sake of simplicity, in the remainder
of this manuscript we refer to H(P) as just entropy. We
consider byte-level granularity because it is the minimum unit
of assembly instructions, where the average instruction length
is about 3 bytes [55]. Since the definition in Eq. 1 is divided

by a normalizing factor, it is constrained as follows:

0 ≤ H(P) ≤ 1 (2)

We now need to define a feature embedding ϕ based on
entropy that extracts a numerical vector from the memory of a
process Pi. A first option could be to directly extract a single
entropy value H(Pi) for the whole process Pi. However, only
massive heap spraying attacks would cause a deviation across
the whole process entropy—thus easing attacker evasion for
lower intensity spraying that occurs, for example, in most of
the heap spraying attacks on 64-bit architectures. Moreover,
a single value for the whole process entropy would hardly
be representative of the process itself, to distinguish between
clean and sprayed memory. Hence, we rely on the fact that
GRAFFITI is able to monitor process memory at page level
to instead compute the entropy distribution of the memory
pages. In other words, we compute the entropy value for each
single page pj ∈ Pi as H(pj), and then consider the entropy
distribution of:

∪pj∈Pi
H(pj) (3)

Figure 1 summarizes the feature extraction and embedding
process. GRAFFITI monitors all the memory pages of process
Pi ∈ P , GLYPH computes H(p) for each page p ∈ Pi. Since
GRAFFITI monitors individual updates to pages, if a page p is
modified, H(p) is recomputed for that page. Then, the entropy
distribution of all memory pages of Pi is approximated as a
histogram with B bins. Using histograms is a common way to
discretize a distribution as the frequency of object occurrences
within a certain range of values [11, 15]. Finally, each process
Pi is associated with a histogram representing the entropy
distribution. We heuristically determine on a validation set that
B=20 bins allows for a good representation of the entropy
distribution offering good differentiation between benign and
malicious processes.

The output of this process is a B-dimensional feature vector
xi corresponding to process Pi, where each element xj ∈ xi is
the frequency of the occurrences in the j-th bin of the entropy
distribution histogram. In the training set, each feature vector
will be associated with label 0 if the process is clean (i.e.,
negative result), and with label 1 if the process is sprayed
(i.e., positive result).

D. Feature Embedding: N-Grams
GLYPH also considers a feature embedding based on n-

grams, under the intuition that they can capture anomalous byte
distributions in the memory of a process. Features based on n-
grams have been extensively and successfully adopted for the
identification of malicious programs (e.g., [49, 61]); however,
in our setting, it is not possible to trivially use the solutions
proposed in past literature. The motivation is that, unlike
traditional methods working on source code or code-specific
memory regions [e.g., 49], here we are interested in looking
at the process-wide system memory of each application, as
GRAFFITI monitors it [19]. We observe that, unlike for entropy,
we perform the n-gram analysis process-wide (i.e., not per-
page). The motivation for this choice is that n-grams capture

4

the frequency of specific bytes sequences, whereas entropy
is more content-agnostic; as an example, two memory pages
may have the same entropy value while containing different n-
grams. Consequently, analyzing n-grams process-wide allows
the system to effectively identify specific byte sequences which
are prevalent in sprayed processes (e.g., shellcode bytes can
occur across among memory pages), whereas for entropy it is
more appropriate to analyze the per-page entropy distribution
within the whole process (because otherwise if we use a single
value of entropy for the whole process memory, we would be
able to recognize only extreme memory perturbations of the
attacker).

Analyzing the entire process memory causes a rapid n-
gram state-space explosion [61], because all possible n-grams
become likely and occur at least once in each process; for
example, with just 2-grams we have 2256 alternatives (where
n = 2 is the n-grams, and 256 are the possible byte values),
which is not feasible to compute. This is different from code
abstractions where there are a fairly limited set of instructions
(i.e., a limited set of possible n-grams); in past literature [49],
pruning through feature selection has been adopted to reduce
the problem complexity, but the feature selection could be
applied only after obtaining the full n-gram feature matrix,
which is not feasible in our case, as in the worst case for
each n we consider we would have n256 possible features. In
short, we need to design a fast yet effective solution that can
select relevant n-grams in advance to be used for heap spraying
detection (R2, R4).

First, for computational efficiency we need to constrain our
analysis to a fixed value of n for the collection of n-grams. It is
not feasible in our setting to collect n-grams for multiple values
of n (e.g., n={2,3,4,5}). Intuitively, heap spraying will leave
shellcode in the memory (at multiple locations) consisting
of a certain sequence of instructions which would appear
anomalous with respect to a clean process memory. Hence,
we choose to consider the average Intel assembly instruction
length, which is n=3 [30]. This allows us to capture the
most frequent instructions within the memory of the process,
and also take into account NOP sleds and data/payload bytes
distribution.

In order to further lower the computational complexity for
training the model, and to reduce the chance of learning
artifacts from the training data, we first extract all possible 3-
grams from a representative spray dataset (§IV)—where each
3-gram appears either in one of the NOP sleds or one of the
shellcode samples. The result is a set of about 100K 3-gram
features, which also represent the feature space X considered
for the 3-gram feature embedding.1 For each process memory
Pi, we extract all the 3-grams in list ni; then, we project the
3-grams ni onto the feature space X (i.e., the set of 100K
3-grams within any spray). The 3-grams that are present in

1We also considered and evaluated using only the “top-k 3-grams” for each
process (e.g., k=1,000 and k=10,000), to create a unique feature space repre-
sentation. However, we have experimentally verified that such a representation
was causing the ML models to learn artifacts (e.g., giving high importance to
n-grams unrelated to the spray attack vectors); this was probably also related
to the “top-k 3-grams” not being necessarily related to heap spraying for the
more evasive attack scenarios we evaluated (see §IV).

X but not in the list ni (i.e., absent from the process Pi) are
assigned frequency 0.

Figure 1 presents a summary of the feature extraction
process for n-grams. Here, 3-grams are extracted from a
whole process Pi monitored by GRAFFITI—this is immediately
obtained as a concatenation (not necessarily ordered) of pages
within the memory of a process. The page-level monitoring
of GRAFFITI is useful for an efficient update of the n-gram
feature vector (i.e., by changing only the 3-gram frequencies
corresponding to a modified memory page).

The output of this process is a feature vector xi where each
element xj ∈ xi is the absolute frequency of the i-th 3-gram
in the feature space X , represented by possible 3-grams in
representative heap sprayings.

E. ML Algorithms

We rely on supervised learning algorithms to distinguish
between clean and sprayed processes.

Choice of the Algorithms. The famous “No Free-Lunch”
theorem of Machine Learning posits that there is no specific al-
gorithm that is suited for all tasks and datasets [28]. Moreover,
if two models can achieve the same performance, the simpler
model is always to be preferred—because they are easier to
explain, and because they reduce chances of overfitting (i.e.,
they tend to generalize better than complex ones). We decide
not to rely on deep learning algorithms because they require
high computational resources, lots of training data, and are
more challenging to explain [11, 60]. Other algorithms such as
k-NearestNeighbor do not make assumptions on the structure
of the data, but have very high testing cost—which is not
feasible with the online requirements of our setting. Hence,
in our scenario, we consider and evaluate the following two
supervised learning algorithms to be adopted on top of the
entropy and n-gram feature embeddings [11]: Support Vector
Machine (SVM) and Random Forest (RF).

The intuition behind the choice of SVM and RF is as
follows. SVM is known to perform well in high-dimensional
feature spaces [25, 61], which is especially the case for the
n-gram feature space. RF is designed to intrinsically reduce
overfitting and improve generalization capabilities. Moreover,
once a model is learned, the test-time overhead of both SVM
and RF is negligible; in other words, once a model is trained,
detecting if a feature vector (i.e., a process) is sprayed or not
(i.e., label ŷ = 0 or ŷ = 1) is performed in a negligible
time (some other ML models, like k-NearestNeighbor, have
negligible training time, but huge test-time overhead [11]).
Moreover, SVM and RF have been successfully used in many
contexts related to malware detection [5, 14, 25, 37, 48].

In the remainder of this section, we briefly describe the
details of SVM and RF, and explain the main hyperparameters
that we consider in our evaluation for tuning the classifiers.

Support Vector Machine. SVM aims to identify the opti-
mal separation hyperplane between two classes; in our case,
between clean and sprayed processes. We consider the same
definition of SVM hyperplane optimization (i.e., to determine
the optimal slope of the hyperplane) as in [5, 11, 21], which

5

is formalized as follows:

min
w,b

{ 1

2
w>w︸ ︷︷ ︸
R(f)

+C

n∑
i=1

max(0, 1− yif(xi))︸ ︷︷ ︸
L

}
(4)

where R is the l2-regularization term (used to increase gen-
eralization), and L is the Hinge loss function. The weights
vector w and the bias b determine the slope and the intercept
of the separating hyperplane. The hyperparameter C is used as
a balance factor for the importance of the regularization term.
The decision function f(xi) is defined as:

f(xi) = wT · xi + b (5)

and is used to predict the class of a test object xi. In particular,
if f(xi) ≥ 0 then ŷi = 1, otherwise ŷi = 0. We recall that
SVM is known to perform well for malware detection and in
high-dimensional feature spaces [5, 21, 48], the latter being
the case especially for GLYPH’s n-gram feature embedding.

Random Forest. RF is an ensemble algorithm based on
Decision Trees (DTs). Starting from the feature matrix X , RF
spawns a set (forest) of k Decision Trees; each tree contains a
random subset of p variables, Xp ⊆ X (i.e., features); each tree
is then built on its set Xp, and multiple progressive splits are
created through information theoretic criterions (e.g., Gini) that
reduce impurity in the dataset [11]. The splits are performed
to maximize the Mean Decreased Impurity before and after
splitting a node into two leaves, and we try different values of
maximum tolerated depth. In the training phase, RF also uses
bootstrap aggregating (bagging), which consists in sampling
randomly with replacement elements from the training set to
build each tree (i.e., so that some elements are repeated).

The main hyperparameter of RF that we consider are the
number of trees k, the maximum tree depth m, and the
maximum number of leaf nodes l: the higher the value of k, the
better the generalization capability of the learning algorithm;
lower values of m and l may increase generalization, but at
the risks of underfitting. RF minimizes chances of overfitting
by design [27] (more formally, it reduces the variance of the
DT algorithm while retaining the same bias).

We recall that RF has shown good generalization and clas-
sification capabilities in the malware domain [14, 37, 48], but
has never been tested for heap spraying detection. Moreover,
its design is useful to limit chances of overfitting our dataset
during experiments.

IV. DATASET

We design and create a representative dataset of Web
browser process pages—benign (clean), malicious (sprayed),
and mixed (sprayed after clean navigation)—to evaluate
GLYPH’s detection performance and runtime overhead (§V).

We use GRAFFITI [19] to monitor the memory of the process
Internet Explorer 11 on a Windows 7 32-bit virtual machine.2
We rely on METASPLOIT as a tool to generate a representative
variety of heap spraying attacks; in particular, we generate a set

2Although our experiments are only on 32-bit architectures, they generalize
also for 64-bit architectures as explained in §VI.

TABLE I. DATASET COMPOSITION.

Type Navigation Processes Total

Benign (Clean) Automated 55 175
Manual 120

Malicious (Sprayed) Automated 160 160
Manual –

Mixed Automated 71 80
Manual 9

TABLE II. HEAP SPRAYING ATTACKS PARAMETERS.

Parameter Values
NOP sled type SIMPLE, COMPLEX
NOP length 50K, 100K, 150K, 200K
Block size 100, 500, 1000, 2000
Shellcode payloads bind tcp, download exec, format all drives,

adduser, powershell bind tcp

of 160 Web pages containing malicious JavaScript code that
performs the heap spraying. We do not consider “packing”
as an obfuscation technique [10] since in the heap spraying
context it reduces the probability of jumping to the correct
instruction and consequently reduces the probability of a
successful attack. Instead, we consider any transformations of
shellcode due to metamorphic and polymorphic techniques as
provided by the METASPLOIT tool.

To successfully spray the heap in Internet Explorer using
JavaScript, we had to face two challenges. (1) Simple memory
allocations in JavaScript do not reliably produce the expected
result for heap spraying. As an example of the issue, a
string allocation does not always correspond to an actual heap
allocation, due to the use of cached free memory blocks in
Internet Explorer’s custom memory allocator. This problem is
extensively discussed in [58]. (2) Some shellcode examples are
detected and stripped from the heap by a defense mechanism
of Internet Explorer, which needs to be bypassed to produce
realistic process memory dumps.

To solve the first problem we used a JavaScript library called
HeapLib [58], that allowed us to generate spraying payloads
with specific memory layouts, effectively solving the problems
mentioned in §II. In particular, we were able to allocate large
contiguous memory regions in the heap, containing multiple
copies of the same payload (a shellcode preceded by a NOP
sled). Since the original version of HeapLib was engineered
only for Internet Explorer up to version 8, we used a modified
version by Chris Valasek, targeting versions 9 to 11 [59].

The second problem is due to internal protection mecha-
nisms in Internet Explorer which detect malicious code via
static analysis at runtime and remove it for preventing ex-
ploitation. We managed to overcome the issue by crafting
shellcode that was not detected by this system. Specifically,
we used METASPLOIT’s payload encoder x86/alpha mixed
to produce payloads and complex NOP sleds. Such encoder
transforms the desired payload, producing one with equivalent
functionality but made only with bytes that are both x86
instructions and alphanumeric characters (with a small non-
ASCII, binary preamble). This was enough to evade the static
analysis defenses of Internet Explorer (see §II); the same
malicious code that would get stripped when written to the

6

heap always appeared in its full form after encoding.
To produce our dataset, we crafted an HTML template

containing the JavaScript calls to HeapLib, with placeholders
for the actual spraying payload. A script iteratively calling
METASPLOIT generated all the different payloads for testing,
with varying parameters. Four parameters could be varied for
each payload:

1) numbler of blocks: the number of repetitions of the
payload formed by NOP sled plus shellcode;

2) nop style: the type of NOP sled, either simple (just
the byte 0x90 repeated), or complex (pseudo-random
sequences of bytes representing x86 instructions, which
are always different from one another in memory,
but nevertheless semantically equivalent to no-ops at
runtime [2, 32]);

3) nop length: the number of bytes composing the NOP
sled in each block;

4) payload: the malicious code at the end of each block,
chosen from a list of codes available in METASPLOIT.

To extract memory dumps from running processes, we
instrumented GRAFFITI. We implemented a new command in
the tool which, upon invocation, traverses the pages allocated
by a process, and dumps their binary content to file. This
command can be invoked right after an heap spraying has
been performed on Internet Explorer. While GRAFFITI runs
the dump, the execution of the entire operating system is
momentarily stopped, resulting in a precise snapshot of the
process memory at a given time. Once the dump is finished,
the execution is resumed.

Table I reports the dataset composition of memory snapshots
that we consider when evaluating GLYPH. We recall that each
memory snapshot has average size of 200MB and has on
average 50K memory pages of 4KB. The 175 benign processes
are derived from both automated random navigation with
AUTOIT [1] and manual navigations of Alexa Top-1,000 Web
sites, with an average navigation time of three minutes. Each
benign process results from the navigation of a few randomly
chosen websites from the Alexa Top-1,000; the choice falls
within varying categories such as news, e-commerce, social
networks (e.g., Twitter), streaming (e.g., YouTube). In the
manual navigations, we simulated both lightweight navigation
(e.g., news websites) and more memory-consuming usage (e.g.,
downloads of large files, and YouTube HD streaming). This
data collection of benign processes ensures varying statistics
in memory usage of legitimate navigations. The 160 “sprayed”
processes correspond to the threat model in which a user
clicks on a link (e.g., within a phishing email or social media
message) and opens a malicious page directly; in particular,
the sprayed processes navigate to a Web page that contains
JavaScript heap spraying attacks of different types. The 80
“mixed” processes correspond to the threat model in which
the heap spraying happens after some benign navigation within
the same process (and this is also one of the possibly evasive
strategies that the attacker can rely on).

Table II summarizes the parameters that we have varied to
obtain different heap spraying JavaScript-based attacks through
METASPLOIT. The SIMPLE NOP corresponds to NOP sleds
with 0x90 values; the COMPLEX NOP sled corresponds

to a pseudo-random sequence of operations that are overall
semantically equivalent to 0x90 but which may look legit-
imate in assembly code. For each of these two cases, we
consider different NOP lengths: 50K, 100K, 150K and 200K—
measured in bytes. The block size represents the number of
repetitions of the spraying pattern. We also consider different
shellcode payloads—to ensure that our detection capability
does not overfit a specific shellcode pattern. The total number
of combinations is 160 because it is the cartesian product of
all the elements in Table II: (2 NOP sleds types) × (4 NOP
length) × (4 block sizes) × (5 shellcode payloads).

V. EXPERIMENTAL EVALUATION

We aim to evaluate the effectiveness of GLYPH with the
different feature embeddings and algorithms introduced in §III.
The experiments are aimed at answering the following ques-
tions. (RQ1) Can GLYPH detect heap spraying? (RQ2) What
is the best combination of features/algorithms in GLYPH for
detecting heap spraying, and with which trade-offs? (RQ3)
Is GLYPH’s overhead small enough to allow for runtime
detection? (RQ4) Is GLYPH robust to evasive attackers, which
try to perform new spray variants of attacks or which rely on
benign background navigation?

A. Experimental Settings
We perform feature extraction and embedding according

to §III on the dataset described in §IV. We implement GLYPH
as a Python3 prototype, relying on several libraries: sklearn
for machine learning algorithms; entropy.shannon entropy for
the computation of normalized Shannon entropy; nltk for the
efficient extraction of n-grams. Our experiments are conducted
on a VM with the following characteristics: Internet Explorer
11 on Windows 7 32-bit, 4GB of allocated RAM.

Experiments. We conduct five main experiments. First, we
consider the overall performance on detecting benign and ma-
licious pages through 10-fold cross-validation, as traditionally
done in the machine learning community [11], to simulate a
stationary setting in absence of concept drift [48].

Second, we evaluate the robustness of our approach in
presence of an evasive attacker that introduces new variants
of spray attacks (Table II); in particular, we simulate evasive
attacks by performing selective hold-out validations, in which
malicious processes with particular variants of heap spraying
attacks are removed from the training set and used only in the
testing set. More formally, we consider the following hold-out
settings (i.e., where each setting corresponds to one in which
that particular type of heap spraying is used only in the testing
set):
A) NOP complex;
B) Small blocks (size < 2,000);
C) Small NOPs (length < 200K);
D) Shellcode seta (adduser, format all drives);
E) Shellcode setb (bind tcp, download exec);
F) NOP complex + Shellcode seta;
G) NOP complex + Shellcode setb.

It is important to note that we do not combine the small
NOPs with small blocks, since we believe that this combination

7

is not representative of the heap spraying attack. In fact if
the attacker uses very small blocks and small NOPs, the
probability of attack success highly decreases [19]. In the
normal heap spraying context the attacker needs to spray a
huge number of the memory pages with relatively large NOP
sleds and blocks, otherwise they could not be sure to land
in the right memory location and execute the injected exploit
code.

Third, we evaluate an evasive setting in which the spray
occurs after some benign navigation (§III-A); this is evaluated
through testing on the mixed processes (Table I).

Fourth, we evaluate the detection time overhead of GLYPH’s
prototype to evaluate the feasibility of runtime deployment.

Given these four experiments, we devise the best configura-
tions of features and algorithms for GLYPH deployment, and
discuss the trade-offs of the suggested configurations.

Finally, we compare the performance of GLYPH with the
state-of-the-art for heap spraying detection: NOZZLE [53].

We observe that, in general, we train the SVM and RF
algorithms only on (subsets of) benign and malicious pro-
cesses, and use the mixed ones—where the spray occurs after
benign navigation—only for testing scenarios (see also §III-A).
The reason for this choice is associated with the unavoidable
risk of overfitting and learning artifacts if mixed processes
were included into the training set: while training on purely
benign and purely malicious examples has the potential to
highlight the real characteristics that distinguish heap sprayed
pages from benign ones, training on mixed pages may lead the
classifier to learn artifacts that are more related to differences
in various types of benign traffic instead of capturing the
salient characteristics of sprayed pages. Moreover, it would
be practically challenging to generate a comprehensive dataset
of mixed traffic which would allow the model to generalize,
as one should consider at least the cartesian product of all
benign and malicious alternatives, which would correspond
to hundreds or thousands of terabytes of training data, which
would be problematic to handle and process (see also §IV).

Performance Metrics. We report the performance in terms
of True Positive Rate (TPR) and False Positive Rate (FPR).
All scores are considered with respect to y=1 as positive class
(corresponding to a sprayed process), and y=0 as the negative
class (corresponding to a clean process).

Reducing Overfitting. The total number of elements within
the dataset is 415, hence a reader may think that the results
of our experiments may not generalize well, and that we
may be overfitting our dataset. First, this dataset corresponds
to a total of approximately 21,000,000 memory pages of
4KB, grouped into 415 heterogeneous processes. Second, we
carefully considered 160 different attack scenarios for heap
spraying, with varying characteristics—which cover different
types of attackers and types of attacks (see Table II). Third,
the benign processes contain both manual and automated
navigation of the Alexa Top-1,000 domains for an average
time of three minutes. While the dataset size is partially limited

by storage space required to dump the processes,3 we believe
it constitutes a relevant sample set for the heap spraying
scenario. Nevertheless, to reduce the risk of overfitting with
GLYPH on our 415 processes, we rely on several mitigations
that are commonly used in the ML literature [11]: (i) we
consider hold-out settings in which some spraying examples
are entirely absent from the training set; (ii) we perform the
hyperparameter tuning to increase generalization [11], i.e., by
varying the number of trees k and maximum depth m in RF
(without restricting maximum number of leaf nodes l), and by
employing an l2 regularizer term in the SVM (by adjusting the
C hyperparameter).

Hyperparameter Tuning. Our full dataset D consists of
three types of processes: benign, malicious, and mixed (see
Table I). For hyperparameter tuning, we consider D′ consisting
only of benign and malicious processes (D′ ⊂ D); the subset
D′ does not contain mixed processes, which are used later
in this paper solely for testing purposes. We then randomly
split D′ into 80% training Tr and 20% hold-out testing
Ts. To find the best hyperparameters, we perform a grid-
search within Tr (i.e., without Ts) with the following values:
for linear SVM, C = {0.001, 0.01, 0.1, 1, 10, 100, 1000}; for
RF, number of trees k = {10, 100, 1000}, maximum depth
m = {32, 64, 128}, without limiting the maximum number
of leaf nodes l. For each hyperparameter combination, we
perform a nested 10-fold cross-validation (CV) within the
training set Tr (i.e., without Ts), and obtain the average TPR
performance at 0.1% FPR. The best average TPR at 0.1%
FPR on the validation sets is achieved with the following
hyperparameters: for SVM, C=10; for RF, k=1,000, m=128,
l=unrestricted. To check for possible overfitting, we finally
test with our hyperparameters on the 20% Ts set (which was
not involved in the hyperparameter tuning), and we obtain
on Ts almost the same performance of the nested 10-fold
CV on Tr: more specifically, a performance within a ±0.005
difference, which suggests lack of overfitting [11]. We maintain
these hyperparameters throughout the experiments.

B. 10-fold CV Detection Performance
We first perform 10-fold cross-validation to evaluate de-

tection performance considering the dataset of benign and
malicious processes (without “mixed” processes, yet). This
scenario is representative of a stationary setting in which
training and testing set come from the same distribution (i.e.,
in the absence of concept drift [48]). Table III summarizes
TPR and FPR with these hyperparameters. We can observe that
all settings have high TPR, but entropy-based detectors have
1.1% FPR, and SVM on n-grams has a few false negatives
leading to a TPR of 96.9%. It is good to observe that there
are no false positives (FPs) with n-gram features, meaning that
any heap spraying alert would correspond only to real threats.
These 10-fold CV results simulate a scenario in which the
attacker only performs minor variations of the known sprays

3We snapshot and dump process memory to ensure repeatability of exper-
iments in different settings, and our dataset for 415 snapshot is about 60GB
(compressed) and over 100GB (uncompressed), where the size of each process
snapshot varies from about 100MB to 580MB (uncompressed).

8

TABLE III. 10-FOLD CV PERFORMANCE OF HEAP SPRAYING
DETECTION (BENIGN AND MALICIOUS PROCESSES).

Features Alg. TPR FPR

entropy SVM 100.0% 1.1%
RF 100.0% 1.1%

n-gram SVM 96.9% 0%
RF 100.0% 0%

TABLE IV. DETECTION PERFORMANCE OF EVASIVE HEAP SPRAYING
VARIANTS (SELECTIVE HOLD-OUT).

Evasive Variants Features Alg. TPR FPR

A NOP complex
entropy SVM 0.0% 0.0%

RF 100.0% 0.0%

n-gram SVM 0.0% 0.0%
RF 100.0% 0.0%

B Small blocks
entropy SVM 58.3% 0.0%

RF 58.3% 0.0%

n-gram SVM 66.6% 0.0%
RF 100.0% 0.0%

C Small NOPs
entropy SVM 79.2% 0.0%

RF 96.7% 0.0%

n-gram SVM 91.7% 0.0%
RF 100.0% 0.0%

D Shellcode seta
entropy SVM 100.0% 0.0%

RF 100.0% 0.0%

n-gram SVM 100.0% 0.0%
RF 100.0% 0.0%

E Shellcode setb
entropy SVM 100.0% 0.0%

RF 100.0% 0.0%

n-gram SVM 100.0% 0.0%
RF 100.0% 0.0%

F NOP complex +
Shellcode seta

entropy SVM 0.0% 0.0%
RF 100.0% 0.0%

n-gram SVM 0.0% 0.0%
RF 100.0% 0.0%

G NOP complex +
Shellcode setb

entropy SVM 0.0 0.0%
RF 100.0 0.0%

n-gram SVM 0.0 0.0%
RF 100.0 0.0%

(in our case, the ones in Table II). We have further investigated
the false negatives (FNs) and false positives (FPs) obtained
in Table III. The FNs associated with the SVM on n-grams
correspond to malicious dumps with only 100 blocks that use
NOP complex—this represented a challenging scenario that the
SVM is not able to detect. The FPs obtained by both SVM
and RF on entropy are due to benign memory pages that have
an entropy pattern very similar to some of the malicious pages
in the training set. We will better discuss how to avoid such
FNs and FPs in the next section.

C. Security Analysis & Performance
The goal of the next experiments is twofold. On the one

hand, we want to show that our system does not present
overfitting and it is resilient enough for detecting a large
spectrum of heap spraying attacks; on the other hand, we
want to introduce a security analysis of the system where the
attacker designs some components of the attack vector that are
able to impact on the detection rate.

Evasive Heap Spray Attack Variants. We now consider
an experiment in which we selectively remove some attacks
from the training set. In other words, these experiments aim

TABLE V. DETECTION PERFORMANCE ON EVASIVE HEAP SPRAYING
AFTER BENIGN NAVIGATION (MIXED PROCESSES).

Features Alg. TPR FPR

entropy SVM 41.3% 0.0%
RF 11.3% 0.0%

n-gram SVM 100.0% 0.0%
RF 0.0% 0.0%

to evaluate if the model generalizes well to novel, evasive
attack variants by training the model on partial knowledge
only. Moreover, it is useful to verify if the results obtained
in Table III still hold.

Table IV reports the GLYPH results for entropy and n-grams
in the different selective hold-out scenarios, with SVM and
RF algorithms. Green cells correspond to optimal detection
performance (i.e., 100% TPR), and red cells correspond to
the lowest detection rate (which corresponds to the maximum
evasion for an attacker). The results here are reported in
terms of TPR and FPR. We remark that the evasive variants
column shows which elements are removed (i.e., hold-out)
from training and then used only for testing. From Table IV
we make the following conclusions:
• GLYPH’s approach is always independent of the shell-

code payloads considered. GLYPH is also able to detect
as sprayed pages that contain shellcode samples that
were absent in the training. This is shown by the perfect
detection rate (TPR) in scenarios D and E.

• We can see that RF outperforms SVM, likely due to its
intrinsic generalization capabilities (§III-E).

• The best performance of GLYPH is achieved by RF on
the n-grams feature space.

• The most challenging scenario to detect is for SVM
when all NOP complex examples are removed entirely
from the training set (configurations A, F, and G). Nev-
ertheless, this represents an extreme scenario, and it is
sufficient to add at least a few NOP complex examples in
the training set to take their characteristics into account.
On a related note, it is interesting to observe that in the
configurations G and F, the detection rate is not affected
by the use of different payloads.

Evasive Benign Background Noise. We now evaluate how
performing benign navigation within the same process that
is then sprayed can affect the detection capability of GLYPH
(§III-A). In particular, we train on all benign and malicious
process memory dumps (§IV), and test on the mixed ones.
Table V reports the results on this setting corresponding to
evasive background noise. We can observe that the overall
detection capability of GLYPH is lower than that of other
scenarios. The SVM on n-grams frequencies achieves a per-
fect detection rate of 100%, whereas SVM on entropy has
only 41.3% TPR. On the other hand, the RF has very poor
performance. The high performance of the SVM is likely
motivated by the fact that the weights vector w of the SVM
determines a hyperplane that is somewhat similar to applying a
weighted threshold on each feature value (§III-E); this implies
that, despite the benign background noise, the SVM may be
detecting suspicious bytes distributions associated with spray
activity. On the other hand, the RF learns decision trees to

9

TABLE VI. GLYPH’S DETECTION PERFORMANCE IN ALL SETTINGS AFTER USING MAJORITY VOTING ENSEMBLE OF SVM AND RF.

SVM+RF (entropy) SVM+RF (n-gram)
Experiment TPR FPR TPR FPR

- 10-fold CV Detection Performance 100.0% 2.4% 100.0% 0.0%
A Hold-out: Unseen NOP complex 100.0% 0.0% 100.0% 0.0%
B Hold-out: Unseen Small blocks 100.0% 0.0% 100.0% 0.0%
C Hold-out: Unseen Small NOPs 96.7% 0.0% 100.0% 0.0%
D Hold-out: Unseen Shellcode seta 100.0% 0.0% 100.0% 0.0%
E Hold-out: Unseen Shellcode setb 100.0% 0.0% 100.0% 0.0%
F Hold-out: Unseen NOP complex + Shellcode seta 100.0% 0.0% 100.0% 0.0%
G Hold-out: Unseen NOP complex + Shellcode setb 100.0% 0.0% 100.0% 0.0%
- Hold-out: Unseen Evasive Benign Background Noise 41.3% 0.0% 100.0% 0.0%

determine what is benign and what is malicious from the
training data, and has no mixed examples; hence, once decision
branches suggesting that a process is benign are taken (due
to the benign background noise), there is no rule that can
reconnect the RF to a malicious process. We recall that we
cannot train our classifiers on mixed processes in order to
avoid overfitting and to avoid learning artifacts associated with
different benign navigations (see §V-A).

It is interesting to observe that the results in Table V seem
to be the opposite of the results in the previous experiments
in Table IV for scenarios A, F and G, in which SVM has 0%
TPR and RF has 100% TPR. The performance of Table IV is
mostly caused by the holding out of NOP complex sleds from
the training set: in this scenario, the RF is still able to gen-
eralize maliciousness by following branches likely indicating
malicious bytes 3-grams or entropy distributions, but the SVM
does not learn a proper hyperplane orientation due to the lack
of NOP complex objects in the training set; moreover, without
NOP complex sleds in the training set, the SVM may have
been over-emphasizing the presence of “simple NOP sleds” as
indication of maliciousness. On the contrary, in Table V the
SVM based on n-grams is able to capture the maliciousness of
all sprayed processes, whereas the RF does not. As mentioned
before, this is likely because RF takes some initial split choices
based on presence/absence of some benign bytes. These results
show that RF and SVM have complimentary detection and
robustness properties in our scenario, which inspires us to
combine them in an ensemble algorithm.

Best Configurations of GLYPH. The detection performance
results obtained above, with low false positives, suggest two
main configurations on which GLYPH can be used: one based
on entropy and one based on n-grams. Each configuration
must run in an majority voting ensemble [14] with RF and
SVM: in particular, a process is marked as sprayed by the
detector if at least one classifier (RF or SVM) marks it as
malicious. Table VI reports the performance obtained with
such majority voting ensemble on the two feature spaces. In
particular, optimal performance is achieved with SVM+RF on
n-grams, for which we recall that the feature space requires
knowledge of possible spray 3-grams (§III-D).

D. Runtime Detection Overhead
The decision time of SVM and RF algorithms used in

GLYPH is negligible as they are inference-based models [11].
However, when new pages are created in the process memory,
the features need to be extracted again; hence, to determine

feasibility of detection time, it is crucial to determine feature
extraction times in GLYPH. We recall that R2 (§III) requires
that detection time is inline with that of GLYPH so that runtime
detection could be feasible.

Figures 2 report detailed times for feature extraction on
our Python3 prototype for both entropy and n-gram feature
spaces. Figure 2a reports a scatterplot of the extraction times,
when considering the feature extraction for the whole process
memory. The X-axis represents the process memory size in
MBs, whereas the Y -axis is the total extraction time expressed
in seconds. We highlight that the Y -axis is in logarithmic
scale. The entropy feature extraction is almost three orders
of magnitude faster than that of n-grams. In particular, for
all processes in our dataset, the entropy feature extraction
is always approximately below 1 second. Conversely, the
extraction of n-grams on a full process may even take a few
minutes for the larger ones.

Figure 2b reports the time required to extract entropy and
n-gram features at a page-level perspective. We recall that
GRAFFITI monitors pages of 4KB. Figure 2b reports two
boxplots, one for each feature type; the Y -axis is in logarithmic
scale and reports the time in terms of seconds. We can observe
that even at page-level the entropy features are almost three
orders of magnitude faster to extract than n-gram features. The
fact that the boxplots are compact implies that the extraction
time is approximately stable between multiple runs. Hence,
we can see that the extraction time is about 10µs per-page for
entropy, and about 3ms per-page for n-grams. It is immediate
to derive that a computer can process up to 100,000 pages
modified per second (on each vCPU core) for the entropy
features, whereas the n-grams will support processing of about
300 pages modified per second (on each vCPU core).

It is important to highlight that the process-level extraction
time in Figure 2a is relevant only at startup time. In an online
context, GRAFFITI monitors the memory pages, and can update
the feature vectors of a monitored process by changing only
the features of the modified pages. Let us consider an example
of “feature vector update” between time t and t + 1s. If k
pages are modified within this time interval, GLYPH must
update the feature vector according only to the changes that
occur in these k pages. GLYPH considers k pre-modification
pages (i.e., their content at time t) and k post-modification
pages (i.e., their content at time t+ 1). To update the feature
vector, it is sufficient for GLYPH to subtract the feature values
corresponding to k pre-modification pages and add the feature
values corresponding to k post-modification pages. In this

10

100 200 300 400 500
Process Memory [MB]

10−1

100

101

102

103

Ti
m

e
[s

]

entropy
n-grams

(a) Process-level extraction times (Y-axis: log scale)

entropy n-grams10−6

10−5

10−4

10−3

10−2

Ti
m

e
[s

]

(b) Page-level extraction times (Y-axis: log scale)

Fig. 2. Feature extraction times for entropy and n-grams features. The left figure reports a scatterplot of the extraction times as a function of the process
memory size. The right figure reports the boxplot distribution of the feature extraction costs. The entropy extraction is more than two order of magnitudes faster
than the n-grams.

way, the feature vector of process Pi can be tested again,
to see whether GLYPH identifies it as sprayed or clean. In
other words, to evaluate feasibility for the online context, only
the per-page extraction performance matters (Figure 2b). The
number of pages for which features are extracted can also be
regulated by adjusting the threshold for the security mode of
GRAFFITI [see 19].

E. GLYPH Best Configurations and Trade-Offs
The results show that there are two best configurations for

GLYPH based on a majority voting ensemble of SVM+RF.
A first mode will work on SVM+RF ensemble with entropy,
because of its fast processing speed, and with no a priori
knowledge of spray attacks needed, and will raise an alert
if heap spraying is detected—with the risk of a few false
positives and some false negatives. A possible response to
an alert could be to kill the process or signal the user. A
second mode with perfect detection rate (i.e., TPR) and no
false positives is that achieved by SVM+RF ensemble with n-
grams, despite requiring some a priori attack knowledge and
the higher runtime overhead required to extract the n-grams.
Despite its runtime overhead, we believe this latter mode is the
one recommended for the following reasons: our prototype is
in Python3, so it is reasonable to assume that a computational
speedup may be achieved with an optimized implementation
and that the security mode of GRAFFITI (see [19]) can reduce
the number of pages to be processed per second by prioritizing
only suspicious pages with memory allocation patterns similar
to those of heap spraying.

F. Experimental Comparison with State-of-the-Art
In this section we compare GLYPH, built on top of GRAF-

FITI, with the existing state-of-the-art for heap spraying de-
tection: NOZZLE [53]. This experiment is performed on two
machines, equipped with an Intel Core i5-2500 @ 3.3 GHz
and 8GB of RAM, running Windows 7 Professional 32bit
and Debian Wheezy 32bit (kernel 3.2), respectively. In the

experiment we first compare the efficiency of the two systems
applied to Internet Explorer during the average user system
workload. We chose the IE since NOZZLE is designed to
protect the Internet Explorer application.

GLYPH is embedded in GRAFFITI and is designed to be
adaptive. Consequently, the only part that is always active is the
Memory Tracer of GRAFFITI. GLYPH uses GRAFFITI’s micro-
virtualization solution that confines the overhead to a single
process and allows our system to monitor an arbitrary number
of different applications without any increase in the overhead
of the rest of the system. NOZZLE is instead designed to protect
only the Web Browser, and it has been specifically designed
to be integrated into the JavaScript allocation engine.

During normal operation of our system, the tracker overhead
is negligible, and it is only noticeable when the monitored
application allocates tens of megabytes of memory at a time—
typically at start-up or when a large document is opened [19].
On top of this small overhead, each application can observe
a different overhead when GRAFFITI switches to security
mode and enables the GLYPH algorithm detection modules
to scan the application memory. The frequency at which this
happens depends on the value of the activation threshold. We
perform an experiment aimed at measuring this overhead. In
the experiment we asked some users to surf the Web by using
Internet Explorer 8 on Windows 7 with our detection system
activated. We choose Internet Explorer 8 since this application
usually consumes a large amount of memory and represents
one of the main targets of spraying attacks. To mimic a
realistic behavior, the users kept a tab open on Gmail, and
then alternately opened three other tabs performing memory
intensive activities: watching videos on YouTube, browsing
Facebook, and checking hundreds of pictures on 9gag.

To have an overhead comparison with NOZZLE, we follow
the NOZZLE approach and select a sampling rate of 10%
(number of pages checked by our detection module over the
total number of pages allocated). As a reference, with this
value NOZZLE introduces an overhead of 20% to Internet
Explorer. Instead the overhead obtained with GLYPH algorithm

11

in the worst case was 8% with entropy detection enabled and
10% with n-grams approach enabled by checking more than
5,000 memory pages. This result shows the GLYPH algorithm
outperforms NOZZLE.

From an false positive of view, NOZZLE shows an average
of 10% FPR on certain websites belong to Alexa Top-150
domains. Most of the false positives are coming from the fact
that the heap object contains some data page that can be inter-
preted as a shellcode attack vector. GLYPH is more accurate
and on the Top-1,000 Alexa domains has an FPR between
1.1% and 2.4% when using entropy features, and an FPR of 0%
when using n-grams. It is important to note that from a design
point of view our system is more agnostic compared with
other state-of-the-art methods, GRAFFITI’s heuristics included.
Moreover our system is more resilient to mimicry attacks, as
showed in §V-C, since it is not related to a specific attack
exploitation technique and not affected by benign background
noise, and can be used to defend any application that runs in
any Operating System.

VI. DISCUSSION

A. Heap Spraying on 64-bit Architectures
For our experimental evaluation, we focused on the Intel x86

32-bit architecture. However, our results can be generalized,
and our work could be also used for detecting heap spraying
attacks on 64-bit architectures.

Applying heap spraying techniques on 64-bit processes is
generally harder due to the increasing amount of variability
created by randomization techniques (e.g., ASLR). On 64-
bit platforms the use of memory randomization techniques
makes the address space to be sprayed larger and hence the
attack, in general, is not feasible anymore. One example in this
direction is Windows 8, which uses two major changes to make
heap spraying more challenging on 64-bit architectures. First,
it uses HiASLR that enables greater entropy for ASLR. On
64-bit platforms, HiASLR introduces a 1TB range of possible
addresses for the base of the heap. This makes it harder to
predict the address of memory objects on the heap. Second,
Windows 8 makes allocations non-deterministic: when you
allocate an object using the default allocator, the position that is
used is randomized (i.e., no longer deterministic), introducing
fine-grained randomization at the individual object level.

However, there are several attack examples for bypassing
such protections. For instance, when the attacker has partial
knowledge of a pointer value (or where some object could be
located in memory) [23]. In this particular attack case (e.g,
Internet Explorer 11 on 64-bit architecture), the attacker uses
a heap spray to make the exploit reliable. More precisely, the
attacker triggers a write to address A+256MB, where A is
the address of some heap object. Due to ASLR, the attacker
cannot predict the exact value of A’s memory address, and
due to the 64-bit heap, they cannot spray enough memory to
fill all of the heap—however, it is enough to spray around
256MB of data into the heap. This makes it likely that the
address of a random heap object, plus 256MB, will land in
the sprayed region. With partial knowledge of such an address,
the attacker can mount a successful attack [23]. Heap spraying

on 64-architecture can still be useful for the attacker if he
can make a vulnerable application dereference memory at a
valid heap address plus a large offset. For instance, consider
the buggy code do something with(a[i]), where i might be an
offset that points past the end of the array. Other examples
of heap-spraying attacks on 64-bit architectures are reported
by Fratric [23] and Gawlik and Holz [26].

In all such cases our system can be used to detect heap
spraying also on 64-bit architectures by using the same design
principles introduced in this paper.

B. Dataset
Our dataset consists of various samples which represent

realistic memory dumps obtained from heap spraying attacks
and benign navigation. Like any dataset, it has limitations in
both structure and variety, due to experimental choices and
technological reasons. In particular, we elaborate more on the
following aspects:
• Variety of sources: all of our payloads were built using

METASPLOIT, for producing both the NOP sleds and
the malicious code. We lack samples from real attacks
with payloads coded manually or with different tools,
mainly due to the problem of finding and validating
a sufficient number of working samples to fit in our
machine learning approach.

• Variety in structure: we varied the structure of our
payloads in four different parts: (1) NOP sled type,
(2) NOP sled length, (3) number of repetitions of the
malicious payload composed by NOP sled + shellcode,
and (4) shellcode type. Although we think that this
produces a representative range of variations in our
dataset, it is possible to imagine additional changes and
combinations for heap spraying payloads.

• Malicious code form: in order to bypass the shellcode
checks in Internet Explorer, we used a component in
METASPLOIT for ASCII-encoding all our malicious
payloads (see Section IV). Although this technique has
allowed us to effectively bypass the aforementioned
checks, we must observe that it reduces the number of
machine instructions that can appear inside a malicious
payload: besides a prologue composed of binary instruc-
tions, the rest of the payload is obviously limited to
machine instructions that are also ASCII characters. It is
important to note that the metamorphic and polymorphic
transformations are independent of the ASCII encoding
as shown in [7] where the authors describe a technique
for turning an arbitrary ARMv8 code into alphanumeric
(ASCII) executable code. The technique is generic and
may well apply to other architectures.

• Payload structure: finally, all of our samples are in
the classic form of a single block of NOP sled plus
shellcode, repeated many times. Although this is a
valid model for heap spraying attacks, based on real-
world exploit code, we cannot exclude the possibility
of different, more elaborate payloads. We have made an
effort to generalize by using complex NOP sleds always
made of different instructions, but attackers could find

12

other ingenious techniques to vary the structure of the
payload, for instance by slightly modifying the single
block at each repetition.

In summary, we believe that these limitations are natural,
as attackers have a broad range of techniques for constructing
attack variations, given a model. However, as shown in §V,
we believe that we have demonstrated GLYPH to be agnostic
and resilient with respect to the variations we introduced, and
successful in classifying samples from a realistic attack model.

VII. RELATED WORK

We compare our work with the state of the art of
heap/JIT/data spraying defenses, and of machine learning
techniques for detecting malicious code.

A. Heap Spraying
Researchers have proposed several approaches for detecting

heap-spraying attacks [22, 24, 53]. For example, Egele et al.
[22] used x86 emulation techniques to defend Web browsers
against drive-by download attacks that use heap-spraying code
injection. The authors proposed to check for the presence of
shellcode by monitoring all strings allocated by the JavaScript
interpreter. Their goal is similar to that of NOZZLE [53],
which uses static analysis of the objects on the heap to detect
heap-spraying attacks. In particular, NOZZLE scans memory
objects looking for a sequence of instructions that includes
a NOP sled and ends with malicious shellcode. However, as
the authors point out, the tool has several drawbacks. For
example, attackers can evade detection by using large NOP
sleds. Moreover, NOZZLE is also specific to the JavaScript
Engine Memory Allocator and it cannot be applied to a generic
application. Another work to defend against heap spraying
attacks is BuBBLE [24]. In this case, the authors start from
the assumption that an attacker needs to spray a large part of
the heap memory with homogeneous data (i.e., NOP sled).
BuBBLE breaks such an assumption by inserting special
values at random positions inside strings before storing them
in memory, and removing them when a string is used by the
application. Again, this solution is specific to the JavaScript
language and cannot be easily ported for the protection of
other applications.

Thanks to GRAFFITI [19], our approach is different from
the previous ones since it does not require knowing how the
memory allocator of a particular interpreter engine works, and
consequently it does not require access to source code and is
OS-agnostic. Moreover, it can protect any system application
as well as kernel subsystems without any assumption about
the internals of the protected component.

This paper proposes GLYPH as an extension of the detection
engine against heap spraying attacks offered by the original
GRAFFITI paper [19]. GRAFFITI uses different modules and
specific heuristics for detecting attacks. In particular the de-
tection modules are composed by a Malicious Code Detector
engine, a component for detecting self-unpacking shellcode,
and several heuristics for activating checks based on mem-
ory allocation rates performed by monitored processes. Such

heuristics and components are not the main contribution of
GRAFFITI, and present some potential limitations as described
by the authors in the Security Analysis section of the GRAFFITI
paper [19]. Moreover such detection techniques need to be
calibrated for avoiding false positives and false negatives.
Our agnostic approach instead allows GLYPH to overcome
the specificity of GRAFFITI’s heuristics by providing a more
generic detection technique that is independent on the attack
vector itself. By using such mechanism we can detect a large
spectrum of heap spraying attacks without knowing how the
attack vector is constructed.

B. JIT Spraying

Bania [6] proposed a detection technique based on the fact
that in order to force the JIT compiler to generate code, an at-
tacker should use ActionScript arithmetic operators. However,
it is not mandatory for JIT spraying attacks to use arithmetic
operations. Another JIT spraying defense has been proposed
by Hu et al. [29]. This solution consists of a kernel patch,
JITsec, that tests for several conditions when a system call
is invoked. In particular, the authors argue that an application
can maintain its security properties and execute code from the
stack and heap by decoupling sensitive code from non-sensitive
code and allowing the latter to run from writable memory
pages. As a result, such a detector only identifies attacks
that directly issue system calls. Mimicry and ROP attacks
are therefore not covered by this model. JITDefender [17] is
another work based on hardware assisted technologies which
aims at defeating JIT Spraying attacks. The system protects the
Virtual Machine dynamic memory pages created by the JIT-
Compiler and allows for the execution of the pages requested
by the VM only. This approach is strictly VM dependent, and
can only detect JIT-spraying attacks. Our solution is agnostic
to the type of attack, and therefore can successfully detect JIT-
spraying attacks without any assumption about the instructions
that are used by the attacker.

Finally, Lobotomy [31] proposes mitigating JIT spraying
attacks by applying the principle of least privilege to the
Firefox JIT engine: by splitting the compiler and executor
modules of the engine, to greatly reduce the amount of code
that needs to access writable and executable pages. The main
drawbacks of Lobotomy, with respect to our approach, are: 1)
its overhead, which is higher than ours, and 2) the need to
redesign the JIT engine of the protected process. The latter is
particularly hindering because it greatly limits the portability
of Lobotomy to other JIT engines. On the contrary, GLYPH
can seamlessly protect any program, without modifying any
of its inner components.

C. Data Spraying

Several defensive solutions have been proposed to avoid
pivoting-based techniques [43, 51, 52]. One of the most
deployed is part of EMET [43], a solution designed by Mi-
crosoft. EMET is a utility that helps to prevent vulnerabilities
in software from being successfully exploited. Among other
features, EMET also addresses the problem of stack pivoting

13

attacks by checking if the stack pointer points outside of
a process stack boundaries whenever a dangerous API is
invoked. However, several researchers proved that it is possible
to bypass the EMET technology in many ways [38, 39, 41].
The impact of these studies shows that technologies that
operate at the same level of execution of the malicious code
need to be extensively tested and carefully designed to offer the
desired protection and avoid possible bypasses. Consequently,
these studies also show the importance of designing reference
monitors that operate at a lower level (e.g., at the hypervisor
level) such as GRAFFITI and GLYPH to avoid these trivial
attacks. Moreover, Microsoft recently introduced two new
countermeasures to hinder browser exploitation: isolated heap
and delayed free [33, 45]. Both these techniques raise the
bar for use-after-free attacks; as stated by the Fortinet Labs
researchers [42], they also make heap manipulation harder, but
they are not a general solution as they protect only the Internet
Explorer browser.

D. Machine Learning in Malware Analysis

Machine learning has been extensively and successfully
applied to malware analysis, both in desktop [4, 35, 36, 49]
and mobile [5, 12, 14, 37] settings.

N-grams have been explored extensively as a way to
characterize and capture malicious (short) sequences of code
instructions or bytes [e.g., 49, 61]. The main challenge to
tackle is related to the high dimensionality of the feature
space generated by n-grams. One approach to tackle the high-
dimensionality problem is to perform feature selection after
computing the full feature matrix [e.g., 49], so that it is more
efficient to train and run a detection algorithm; however, in
our setting it is not feasible to precompute the whole feature
space since n-grams derived from process memory, and the
possible combinations, are exponentially greater than those
that can be found in source code and binaries, quickly leading
to out-of-memory errors during feature extraction. Another
approach relies on bloom filters to approximate the content
of a memory process [e.g., 61]; however, this approach loses
information of the bytes that cause the classification, we did
not want to have n-gram collisions due to the nature of bloom
filters. Hence, we decided to apply a mask of n-grams found
in a high variety of spray attacks (§IV); this allowed us to
prioritize the relevant n-grams that may distinguish between
clean and sprayed processes.

When a malware is heavily obfuscated or encrypted, n-
grams may not be sufficient by themselves. Hence, many
approaches based on Shannon entropy [54] have been explored
for malware detection, in particular for packed and encrypted
malware [e.g., 12, 36]. Under the intuition that a spray will
also affect the bytes distribution in the process memory—given
the implicitly disruptive nature of a spraying attack [19]—we
decided to explore the use of entropy as a feature for anomaly
detection as well.

To the best of our knowledge, this is the first paper that
explores the use of machine learning techniques for detecting
heap spraying.

VIII. CONCLUSION

This paper extends GRAFFITI [19] by proposing GLYPH,
which for the first time explores the use of machine learning
for heap spraying detection via runtime page-level memory
monitoring. Evaluations on a representative dataset of more
than 400 process dumps demonstrate GLYPH’s efficiency,
effectiveness, and resiliency against different heap spraying
attack strategies. In particular, we identify two major config-
uration modes for GLYPH: one based on information entropy,
which supports very fast execution, and does not require a
priori knowledge on heap spray variants, but suffers from
false positives; one based on memory n-grams, which is more
computationally demanding, requires some a priori knowledge
on the heap spray attack variants, but achieves perfect accuracy.
We show that both modes outperform NOZZLE [53] in terms
of both detection performance and runtime overhead.

Future work may explore the feasibility of generating
problem-space adversarial ML attacks [50] in the context
of heap spraying and other memory corruptions. That is,
adversarial ML attacks that do not work solely on the feature
space, but for which also a feasible and inconspicuous real-
world exploit can be generated and executed to evade the ML-
based detection classifier. Moreover, it would be interesting
to explore higher-level abstractions of process memory which
could provide more explainable predictions.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their insightful
comments which helped improve the quality of this work.
This project has received funding from the Italian Ministry of
Foreign Affairs and International Cooperation (grant number:
PGR00814).

REFERENCES
[1] Autoit. https://www.autoitscript.com/site/autoit/.
[2] NOP Generators in MetaSploit. https://www.coursehero.com/file/p48l4qq/NOP-

Generators-Metasploits-NOP-generators-are-designed-to-produce-a-
sequence-of/, Visited May 2020.

[3] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow integrity
principles, implementations, and applications. ACM Transactions on
Information and System Security (TISSEC), 2009.

[4] B. Alsulami, A. Srinivasan, H. Dong, and S. Mancoridis. Lightweight
behavioral malware detection for windows platforms. In MALWARE.
IEEE, 2017.

[5] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck.
DREBIN: Effective and Explainable Detection of Android Malware in
Your Pocket. In Proc. of Network and Distributed System Security
Symposium (NDSS), 2014.

[6] P. Bania. JIT spraying and mitigations. CoRR, 2010.
[7] H. Barral, H. Ferradi, R. Géraud, G. Jaloyan, and D. Naccache. ARMv8

Shellcodes from ’A’ to ’Z’. CoRR, abs/1608.03415, 2016.
[8] E. Berger and B. Zorn. DieHard: Probabilistic memory safety for unsafe

languages. In SIGPLAN, 2006.
[9] E. Bhatkar, D. C. Duvarney, and R. Sekar. Address obfuscation: an

efficient approach to combat a broad range of memory error exploits. In
Proc. of USENIX Security Symposium, 2003.

[10] L. Bilge, A. Lanzi, and D. Balzarotti. Thwarting real-time dynamic
unpacking. In Proc. of the European Workshop on System Security
(EUROSEC), 2011.

[11] C. M. Bishop. Pattern Recognition and Machine Learning. 2006.
[12] G. Canfora, F. Mercaldo, and C. A. Visaggio. An HMM and struc-

tural entropy based detector for android malware: An empirical study.
Computers & Security, 2016.

14

https://www.autoitscript.com/site/autoit/

[13] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley. Unleashing mayhem
on binary code. In Proc. of IEEE Symposium on Security and Privacy
(S&P), 2012.

[14] T. Chakraborty, F. Pierazzi, and V. S. Subrahmanian. EC2: Ensemble
Clustering and Classification for Predicting Android Malware Families.
IEEE Trans. Dependable and Secure Computing (TDSC), 2020.

[15] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.
ACM Computing Surveys (CSUR), 2009.

[16] L. Chen and Q. He. Shooting the osx el capitan
kernel like a sniper. https://speakerdeck.com/flankerhqd/
shootingthe-osx-el-capitan-kernel-like-asniper.

[17] P. Chen, Y. Fang, B. Mao, and L. Xie. JITDefender: A Defense against
JIT Spraying Attacks. In Future Challenges in Security and Privacy for
Academia and Industry. Springer Berlin Heidelberg, 2011.

[18] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang. StackGuard: Automatic Adaptive
Detection and Prevention of Buffer-overflow Attacks. In Proc. of
USENIX Security Symposium, 1998.

[19] S. Cristalli, M. Pagnozzi, M. Graziano, A. Lanzi, and D. Balzarotti.
Micro-Virtualization Memory Tracing to Detect and Prevent Spraying
Attacks. In Proc. of USENIX Security Symposium, 2016.

[20] M. Daniel, J. Honoroff, and C. Miller. Engineering Heap Overflow
exploits with Javascript. In USENIX Security Symposium, 2008.

[21] A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck,
I. Corona, G. Giacinto, and F. Roli. Yes, machine learning can be
more secure! A case study on android malware detection. IEEE Trans.
Dependable and Secure Computing (TDSC), 2017.

[22] M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda. Defending browsers
against drive-by downloads: Mitigating heap-spraying code injection
attacks. In Proc. of Conference on Detection of Intrusions and Malware
& Vulnerability Assessment (DIMVA). Springer, 2009.

[23] I. Fratric. Exploiting internet eplorer 11 64-bit on windows 8.1. http://
ifsec.blogspot.com/2013/11/exploiting-internet-explorer-11-64-bit.html,
2013.

[24] F. Gadaleta, Y. Younan, and W. Joosen. BuBBle: A Javascript Engine
Level Countermeasure against Heap-Spraying Attacks. In Engineering
Secure Software and Systems (ESSoS). Springer Berlin Heidelberg, 2010.

[25] H. Gascon, S. Ullrich, B. Stritter, and K. Rieck. Reading between the
lines: Content-agnostic detection of spear-phishing emails. In Proc. of
Symposium on Research in Attacks, Intrusions, and Defenses (RAID).
Springer, 2018.

[26] R. Gawlik and T. Holz. Sok: Make jit-spray great again. In Proc. of
USENIX Workshop on Offensive Technologies (WOOT), 2018.

[27] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning (ELS). Springer, 2009.

[28] Y.-C. Ho and D. L. Pepyne. Simple explanation of the no-free-lunch
theorem and its implications. Journal of Optimization Theory and
Applications, 2002.

[29] W. Hu, J. Hiser, D. Williams, A. Filipi, J. W. Davidson, D. Evans, J. C.
Knight, A. Nguyen-Tuong, and J. Rowanhill. Secure and practical de-
fense against code-injection attacks using software dynamic translation.
In Proc. of Int. Conference on Virtual Execution Environments. ACM,
2006.

[30] K. R. Irvine et al. Assembly language for Intel-based computers.
Citeseer, 2003.

[31] M. Jauernig, M. Neugschwandtner, C. Platzer, and P. M. Comparetti.
Lobotomy: An architecture for jit spraying mitigation. In Proc. of the
Internationalence on Availability, Reliability and Security (ARES), 2014.

[32] D. Kennedy, J. O’gorman, D. Kearns, and M. Aharoni. Metasploit: the
penetration tester’s guide. No Starch Press, 2011.

[33] M. Labs. Isolated heap and friends - object allocation hardening
in web browsers. https://labs.mwrinfosecurity.com/blog/2014/06/20/
isolated-heap-friends---objectallocation-hardening-in-web-browsers/.

[34] L. Li, J. E. Just, and R. Sekar. Address-space randomization for windows
systems. In Proc. of Annual Computer Security Applications Conference
(ACSAC), 2006.

[35] M. H. Ligh, A. Case, J. Levy, and A. Walters. The art of memory
forensics: detecting malware and threats in windows, linux, and Mac
memory. John Wiley & Sons, 2014.

[36] R. Lyda and J. Hamrock. Using entropy analysis to find encrypted and

packed malware. IEEE Security & Privacy, 2007.
[37] E. Mariconti, L. Onwuzurike, P. Andriotis, E. De Cristofaro, G. Ross,

and G. Stringhini. MaMaDroid: Detecting Android Malware by Building
Markov Chains of Behavioral Models. In Proc. of Network and
Distributed System Security Symposium (NDSS), 2017.

[38] Bromium Labs. Bypassing EMET 4.1. http://bromiumlabs.files.
wordpress.com/2014/02/bypassing-emet-4-1.pdf, 2014.

[39] Duo Security. Wow64 and so can you bypassing emet with a single
instruction. https://duo.com/assets/pdf/wow-64-and-so-can-you.pdf.

[40] eEye Research. Microsoft internet information services remote
buffer overflow (system level access). https://web.archive.org/web/
20061026101830/http://research.eeye.com/html/advisories/published/
AD20010618.html, 2006.

[41] FireEye. Using EMET to disable EMET. https://www.fireeye.com/blog/
threatresearch/2016/02/using emet to disabl.html, 2016.

[42] Fortinet Labs. Is use-after-free exploitation dead? the new ie memory
protector will tell you. http://blog.fortinet.com/.

[43] Microsoft. The enhanced mitigation experience toolkit. http://support.
microsoft.com/kb/2458544, 2017.

[44] Team Teso. Exploit “7350854.c”. https://www.exploit-db.com/exploits/
409/, 2001.

[45] Trendmicro Labs. Mitigating UAF Exploits with Delay Free for Internet
Explorer. https://blog.trendmicro.com/trendlabs-security-intelligence/
mitigating-uaf-exploits-with-delay-free-for-internet-explorer/, 2014.

[46] G. Novark, E. D. Berger, and B. G. Zorn. Exterminator: Automatically
correcting memory errors with high probability. Communication of the
ACM (CACM), 2008.

[47] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda. G-free:
defeating return-oriented programming through gadget-less binaries. In
Proc. of Annual Computer Security Applications Conference (ACSAC),
2010.

[48] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro.
TESSERACT: Eliminating Experimental Bias in Malware Classification
across Space and Time. Proc. of USENIX Security Symposium, 2019.

[49] R. Perdisci, A. Lanzi, and W. Lee. Mcboost: Boosting scalability in
malware collection and analysis using statistical classification of exe-
cutables. In Proc. of Annual Computer Security Applications Conference
(ACSAC), 2008.

[50] F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cavallaro. Intriguing
Properties of Adversarial ML Attacks in the Problem Space. In Proc.
of IEEE Symposium on Security and Privacy (S&P), 2020.

[51] A. Prakash and H. Yin. Defeating ROP Through Denial of Stack Pivot. In
Proc. of Annual Computer Security Applications Conference (ACSAC),
2015.

[52] R. Qiao, M. Zhang, and R. Sekar. A Principled Approach for ROP
Defense. In Proc. of Annual Computer Security Applications Conference
(ACSAC), 2015.

[53] P. Ratanaworabhan, V. B. Livshits, and B. G. Zorn. NOZZLE: A Defense
Against Heap-spraying Code Injection Attacks. In Proc. of USENIX
Security Symposium, 2009.

[54] C. E. Shannon. Prediction and entropy of printed english. Bell system
technical journal, 30(1):50–64, 1951.

[55] M. Sikorski and A. Honig. Practical malware analysis: the hands-on
guide to dissecting malicious software. No Starch Press, 2012.

[56] Skylined. Heap spraying high addresses in 32-bit chrome/firefox on
64-bit windows. http://blog.skylined.nl/20160622001.html.

[57] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-R.
Sadeghi. Just-In-Time Code Reuse: On the Effectiveness of Fine-Grained
Address Space Layout Randomization. In Proc. of IEEE Symposium on
Security and Privacy (S&P).

[58] A. Sotirov. Heap Feng Shui in Javascript. Black Hat Europe, 2007.
[59] C. Valasek. heapLib 2.0. https://ioactive.com/heaplib-2-0/, 2013.
[60] A. Warnecke, D. Arp, C. Wressnegger, and K. Rieck. Evaluating

explanation methods for deep learning in security. Proc. of IEEE
European Symposium on Security and Privacy (EuroS&P), 2020.

[61] C. Wressnegger, G. Schwenk, D. Arp, and K. Rieck. A close look on
n-grams in intrusion detection: anomaly detection vs. classification. In
Proc. of ACM Workshop on Artificial Intelligence and Security (AISEC),
2013.

15

https://speakerdeck.com/flankerhqd/shootingthe-osx-el-capitan-kernel-like-asniper
https://speakerdeck.com/flankerhqd/shootingthe-osx-el-capitan-kernel-like-asniper
http://ifsec.blogspot.com/2013/11/exploiting-internet-explorer-11-64-bit.html
http://ifsec.blogspot.com/2013/11/exploiting-internet-explorer-11-64-bit.html
https://labs.mwrinfosecurity.com/blog/2014/06/20/isolated-heap-friends---objectallocation-hardening-in-web-browsers/
https://labs.mwrinfosecurity.com/blog/2014/06/20/isolated-heap-friends---objectallocation-hardening-in-web-browsers/
http://bromiumlabs.files.wordpress.com/2014/02/bypassing-emet-4-1.pdf
http://bromiumlabs.files.wordpress.com/2014/02/bypassing-emet-4-1.pdf
https://duo.com/assets/pdf/wow-64-and-so-can-you.pdf
https://web.archive.org/web/20061026101830/http://research.eeye.com/html/advisories/published/AD20010618.html
https://web.archive.org/web/20061026101830/http://research.eeye.com/html/advisories/published/AD20010618.html
https://web.archive.org/web/20061026101830/http://research.eeye.com/html/advisories/published/AD20010618.html
https://www.fireeye.com/blog/threatresearch/2016/02/using_emet_to_disabl.html
https://www.fireeye.com/blog/threatresearch/2016/02/using_emet_to_disabl.html
http://blog.fortinet.com/
http://support.microsoft.com/kb/2458544
http://support.microsoft.com/kb/2458544
https://www.exploit-db.com/exploits/409/
https://www.exploit-db.com/exploits/409/
https://blog.trendmicro.com/trendlabs-security-intelligence/mitigating-uaf-exploits-with-delay-free-for-internet-explorer/
https://blog.trendmicro.com/trendlabs-security-intelligence/mitigating-uaf-exploits-with-delay-free-for-internet-explorer/
http://blog.skylined.nl/20160622001.html
https://ioactive.com/heaplib-2-0/

APPENDIX

A. Symbol Table
Table VII provides a reference for notation, acronyms, and

major symbols used throughout the paper.

TABLE VII. SYMBOL TABLE.

SYMBOL DESCRIPTION

SVM (Linear) Support Vector Machine.
DT Decision Tree.
RF Random Forest.
SVM+RF Ensemble classifier based on majority voting between SVM

and RF. In practice, ensemble prediction corresponds to label
1 if at least one classifier predicts label 1.

C SVM hyperparameter for regularization-loss trade-off.
k Number of trees in the forest (RF hyperparameter).
m Maximum tree depth (RF hyperparameter).
l Maximum number of leaf nodes (RF hyperparameter).

X Feature space.
Pi Process i. A process is represented as its sequence of bytes

in RAM.
ni 3-grams set of process Pi.
xi Feature vector corresponding to process i. Vectors are

represented in bold, and vector elements are in italic. For
example: xj ∈ xi (element xj that belongs to vector xi).

yi Ground truth label of process Pi. If yi = 0, Pi is a benign
process; if yi = 1, Pi is a sprayed process.

ŷi Predicted label of process Pi. If ŷi = 0, Pi is predicted as
a benign process; if ŷi = 1, Pi is predicted as a sprayed
process.

BIOGRAPHIES

Fabio Pierazzi is a Lecturer (Assistant Professor)
at the Department of Informatics at King’s College
London. His research interests lie at the intersection
of AI and cybersecurity, with particular focus on
intrusion detection, adversarial ML, and systems se-
curity. He completed his Ph.D. in Computer Science
in 2017 at the University of Modena, Italy. He spent
most of 2016 as a visiting scholar at University of
Maryland, College Park (US), and held a two-year
PostDoc in the UK at the Systems Security Research
Lab (S2Lab). Home page: https://fabio.pierazzi.com

Stefano Cristalli got his Ph.D in computer science
from University of Milan (2019). During his Ph.D he
has worked on several security projects with the aim
of protecting applications from sophisticated attacks.
In particular his main area of research deals with
software protection, program analysis and automatic
exploit generation.

Danilo Bruschi is Full Professor in Computer Sci-
ence at University of Milan where he leads the
Security Lab called Laser. He received a Ph.D. in
Computer Science from University of Milan, and he
was a honorary fellow at University of Wisconsin,
Madison. He is one of the pioneers of the systems
security field in Italy. His research interests cover
several area of the cyber security such as: System
Security, Operating System, Computer Forensics.
Homepage: http://bruschi.di.unimi.it/bruschi/Danilo
Bruschis Home.html

Michele Colajanni is Full Professor in Com-
puter Engineering at the University of Modena and
Reggio Emilia since 2000. He received a Master
degree in Computer Science from the University
of Pisa, and a Ph.D. degree in Computer Engi-
neering from the University of Roma in 1992.
He manages the Interdepartmental Research Cen-
ter on Security and Safety (CRIS). His research
interests include the security of large scale sys-
tems, performance and prediction models. Home-
page: https://weblab.ing.unimo.it/people/colajanni/

Mirco Marchetti is an Associate Professor at the
Department of Engineering “Enzo Ferrari” of the
University of Modena and Reggio Emilia (Italy).
He received a Ph.D. in Information and Commu-
nication Technologies in 2009. His research in-
terests include all aspects of system and net-
work security, security for cyber-physical systems
and automotive, cryptography applied to cloud se-
curity and outsourced data and services. Home-
page: https://weblab.ing.unimore.it/people/marchetti

Andrea Lanzi is an Associate Professor in Computer
Science at the University of Milan. He is interested
in several aspects of Cyber Security. In particular, his
main area of research deals with Host Intrusion De-
tection Systems (HIDS), memory errors exploitation,
reverse engineering, malware and forensic analysis.
In recent years he has mainly studied the application
of emulation/virtualization and compiler techniques
for malware analysis and detection in Android con-
text. In addition he has been working on analyzing
large-scale security malware datasets to investigate

the behavior of current cyber threats. Homepage: http://lanzi.di.unimi.it

16

http://bruschi.di.unimi.it/bruschi/Danilo_Bruschis_Home.html
http://bruschi.di.unimi.it/bruschi/Danilo_Bruschis_Home.html

	Introduction
	Background
	Heap Spraying Detection
	Threat Model
	Detection Task
	Feature Embedding: Information Entropy
	Feature Embedding: N-Grams
	ML Algorithms

	Dataset
	Experimental evaluation
	Experimental Settings
	10-fold CV Detection Performance
	Security Analysis & Performance
	Runtime Detection Overhead
	Glyph Best Configurations and Trade-Offs
	Experimental Comparison with State-of-the-Art

	Discussion
	Heap Spraying on 64-bit Architectures
	Dataset

	Related Work
	Heap Spraying
	JIT Spraying
	Data Spraying
	Machine Learning in Malware Analysis

	Conclusion
	Appendix
	Symbol Table

	Biographies
	Fabio Pierazzi
	Stefano Cristalli
	Danilo Bruschi
	Michele Colajanni
	Mirco Marchetti
	Andrea Lanzi

