
Computer Networks 109 (2016) 127–141

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Analysis of high volumes of network traffic for Advanced Persistent

Threat detection

Mirco Marchetti, Fabio Pierazzi ∗, Michele Colajanni, Alessandro Guido

Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Italy

a r t i c l e i n f o

Article history:

Received 30 September 2015

Revised 1 April 2016

Accepted 25 May 2016

Available online 1 June 2016

Keywords:

Security analytics

Traffic analysis

Advanced Persistent Threats

Data exfiltration

a b s t r a c t

Advanced Persistent Threats (APTs) are the most critical menaces to modern organizations and the most

challenging attacks to detect. They span over long periods of time, use encrypted connections and mimic

normal behaviors in order to evade detection based on traditional defensive solutions. We propose an

innovative approach that is able to analyze efficiently high volumes of network traffic to reveal weak

signals related to data exfiltrations and other suspect APT activities. The final result is a ranking of the

most suspicious internal hosts; this rank allows security specialists to focus their analyses on a small set

of hosts out of the thousands of machines that typically characterize large organizations. Experimental

evaluations in a network environment consisting of about 10K hosts show the feasibility and effectiveness

of the proposed approach. Our proposal based on security analytics paves the way to novel forms of

automatic defense aimed at early detection of APTs in large and continuously varying networked systems.

© 2016 Elsevier B.V. All rights reserved.

1

c

r

o

t

a

s

o

m

i

i

n

t

r

d

t

p

d

c

w

a

f

a

l

a

d

b

o

l

n

f

h

t

i

a

-

a

I

b

i

n

o

a

a

c

h

1

. Introduction

Advanced Persistent Threats [1,2] (APTs) represent the most

ritical menace to modern organizations. Unlike automated broad-

ange attacks, APTs are human-driven infiltrations, perpetrated

ver long periods of time, customized for the targeted organiza-

ion after some intelligence analyses, possibly on open sources,

nd can even leverage unknown exploits to infiltrate vulnerable

ystems [3] . The economic cost for an organization that is a victim

f an APT can reach even millions of dollars [4] , and its reputation

ay be compromised. Since large corporate networks continue to

ncrease in terms of traffic and number of connected devices, it

s a tough research challenge to design and implement advanced

etwork monitoring systems and security analytical algorithms

hat can detect APT attacks in a rapid way. Traditional secu-

ity solutions based on pattern matching (e.g., [5]) work well for

etecting known attacks, but they cannot identify APTs because at-

ackers typically exploit unknown vulnerabilities, and use standard

rotocols and encrypted communications (e.g., HTTPS) to evade

etection [1] . Moreover, existing traffic analyzers are able to detect

ommon types of attacks (e.g., distributed denial of service and

orms [6–10]), but they are inadequate to identify APTs because

n expert attacker mimics normal behavior and compromises a
∗ Corresponding author.

E-mail addresses: mirco.marchetti@unimore.it (M. Marchetti),

abio.pierazzi@unimore.it (F. Pierazzi), michele.colajanni@unimore.it (M. Colajanni),

lessandro.guido@unimore.it (A. Guido).

S

h

o

t

t

ttp://dx.doi.org/10.1016/j.comnet.2016.05.018

389-1286/© 2016 Elsevier B.V. All rights reserved.
imited number of specific hosts thus avoiding spreading infections

s typical automatic malware does. Another problem of present

etection systems installed in large architectures is represented

y the huge numbers of generated alarms, at least in the order

f thousands per day. A similar context would require either a

arge number of dedicated security analysts or, more likely, the

eed to overlook most alarms. As an additional observation, our

ocus on traffic logs reflects a realistic enterprise scenario in which

ost-based logs (e.g., system calls) would be extremely expensive

o collect and analyze.

The real goal of this paper should be clear: we do not aim to

dentify the hosts that are surely compromised because this is

n unrealistic goal in the APT case. Instead, we want to detect

out of thousands hosts characterizing the information system of

 large organization- the few hosts that show suspicious activities.

n such a way, we allow security analysts to be more effective

ecause they can focus their competence and attention on a lim-

ted number of hosts. As a means to reach this goal, we propose a

ovel framework that is able to gather and analyze huge volumes

f traffic and can detect some of the key phases of APT-related

ctivities corresponding to data exfiltrations [1] . These features

re extracted and evaluated over time for all internal hosts, each

orresponding to a point in a multi-dimensional feature space.

uspiciousness of movements and positions is evaluated for each

ost by inspecting its past and by comparing it to the other hosts

f the observed network. The final output is a ranked list of hosts,

hat allows the security analysts to concentrate their expertise on

he top- k suspicious ones.

http://dx.doi.org/10.1016/j.comnet.2016.05.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2016.05.018&domain=pdf
mailto:mirco.marchetti@unimore.it
mailto:fabio.pierazzi@unimore.it
mailto:michele.colajanni@unimore.it
mailto:alessandro.guido@unimore.it
http://dx.doi.org/10.1016/j.comnet.2016.05.018

128 M. Marchetti et al. / Computer Networks 109 (2016) 127–141

p

p

t

n

m

h

s

d

2

c

a

S

o

p

A

I

d

p

d

a

d

p

d

l

a

r

t

r

o

u

r

a

r

(

t

i

t

m

o

t

e

b

z

i

t

m

t

a

b

i

a

h

e

t

c

i

d

a
Special attention is given to the scalability and efficiency of the

proposed framework, as most analyses can be executed in parallel

for each internal host. By analyzing the network flows instead of

raw traffic data, our approach achieves high performance and lim-

ited computational and storage costs. As additional remarkable fea-

ture, the proposed framework can work even for encrypted com-

munications because it does not need to inspect payload data.

The main contributions of this paper can be summarized as fol-

lowing:

• we characterize network statistics of real and large network en-

vironments, and define a model aimed to detect APT-related ac-

tivities with specific attention to data exfiltrations;

• we propose a set of algorithms that are able to score suspi-

ciousness of APT activities by evaluating movements and posi-

tions of the internal hosts in a multidimensional feature space

over time;

• we design and implement a prototype that is applied to a

real networked system consisting of about 10K hosts and that

demonstrates the feasibility and effectiveness of the proposed

approach.

To the best of our knowledge, this paper presents the first pro-

posal of models, algorithms and analyzers integrated in a real pro-

totype that can support security analysts to detect the most sus-

picious hosts that may be involved in APT-related activities and

specifically in data exfiltrations. Indeed, despite the relevant risk

represented by APTs, few results exist for detecting similar attacks.

Most papers [11–15] consider one or more case studies of famous

APTs, describe their main features, and propose some best practice

with no attempt to consider a general framework for automatic or

semi-automatic detection. Other solutions [16–18] are focused on

the design of the main components of a framework for identifying

APTs, but they do not propose detection rules and leave details to

future works. Friedberg et al. [19] present a solution that considers

the analysis of host-based security logs and is complementary to

our network-based approach. Moreover, in our experience, in large

network scenarios it is almost impossible to gather and analyze

host-based security logs because this activity requires the deploy-

ment of software agents on each computer and has high costs in

terms of performance and management overhead.

The remainder of the paper is structured as follows.

Section 2 compares our work with related literature. Section 3 de-

scribes the typical lifecycle of an APT and the challenges related

to their detection. Section 4 presents an overview of the proposed

framework. Section 5 motivates the choice for features that are

tailored to efficiently detect possible data exfiltrations in large net-

work environments. Section 6 defines how suspicious movements

in the feature space are evaluated and how the different metrics

are combined into a ranking score. Section 7 presents an experi-

mental evaluation on a real large network environment consisting

of about 10K hosts. Finally, Section 8 presents conclusions and

possible directions for future research.

2. Related work

We propose a novel framework for ranking internal hosts that

are likely to be involved in APT attacks by monitoring high vol-

umes of network traffic efficiently and effectively. Our proposal

combines heuristics based on knowledge related to known APTs

with behavioral and statistical models that are able to capture sus-

picious network activities.

The main motivation behind our work relies in the observation

that traditional security solutions based on pattern matching (e.g.,

solutions based on network intrusion detection systems [5,20,21])

are not adequate for identifying APTs, due to the usage of en-

crypted covert communication channels and zero-day attacks. Most
roposals based on statistical traffic analyses that could work in

resence of encryption are mainly focused on anomaly detec-

ion [22] of more popular types of attacks (e.g., distributed de-

ial of service [9,10] or worms [23,24]), and do not consider APTs;

oreover, the fact that attackers in APTs try to mimic normal be-

avior [1] further complicates detection through statistical analy-

es.

We can consider three main related areas in the literature: APT

etection, botnet detection, and insider threat detection.

.1. APT detection

Despite the relevance of the APT problem, the literature fo-

using on this topic is still limited. Most articles [1,2,11] describe

nd analyze popular and publicly disclosed APT cases, such as

tuxnet [12] , Duqu [13] and Flame [14] . However, these studies

nly discuss some mitigation techniques mainly based on best

ractices, and do not discuss solutions for automatic detection of

PTs.

Other works [16,25] try to formalize the APT detection problem.

n [25] , the authors propose a 7-phase detection model to identify

ifferent steps of an APT. In [16] , the authors propose an attack

yramid that aims to capture movements of an attacker through

ifferent domains (e.g., physical, network, application). In [17] the

uthors propose possible building blocks for a framework of APT

etection. However, all these approaches are limited to the pro-

osal of guidelines that should be used to build methods for APT

etection, but the definition of detection rules and approaches is

eft to future work.

A more practical work based on graph analytics [26] proposes

 new metric that measures the vulnerability of a network envi-

onment with respect to the risk of privilege escalation. However,

his work focuses on the proposal of a single graph-based met-

ic, that is intended only as a means to evaluate the vulnerability

f a network to APTs (especially when granting new privileges to

sers) but does not help in detection of APTs in operational envi-

onments.

In another interesting work [19] the authors propose an

nomaly detection system for identifying APTs from several secu-

ity logs. However, their approach requires a huge number of logs

also collected on individual hosts) that are often impractical to ob-

ain, and the output of their proposal may be extremely difficult to

nterpret for a security analyst, since their approach is agnostic to

he given input. On the other hand, our focus on network traffic is

ore practical and our output is easier to interpret, as it consists

f a ranked list of hosts that performed suspicious network activi-

ies possibly related to data exfiltrations or key phases of APTs.

Other related works focus specifically on the detection of data

xfiltrations. Some of them [27,28] require a big amount of host-

ased log data that would be unfeasible to collect in large organi-

ations, whereas our focus is on network traffic that can be eas-

ly collected through some network probes inside the organiza-

ion. Bertino et al. [29] focus on the analysis of DataBase Manage-

ent System (DBMS) access logs in order to detect suspicious pat-

erns for possible exfiltrations, but do not consider network traffic

nd their approach is limited to the detection of possible DBMS-

ased exfiltrations. Liu et al. [30] propose a framework for detect-

ng data exfiltrations through analysis of network communications,

nd their approach is based on automatic signature generation but

as two major shortcomings. First, the authors assume that attack-

rs perform plaintext communications that can be matched with

heir signatures, whereas most APTs use encrypted or obfuscated

ommunications [1] . Moreover, they assume that all sensitive data

s known a-priori in order to be able to generate the signatures for

etecting their exfiltration. On the contrary, our proposal can be

pplied even if the attacker uses encrypted communications and

M. Marchetti et al. / Computer Networks 109 (2016) 127–141 129

s

l

s

2

w

d

m

b

i

a

t

b

d

p

(

A

a

o

b

d

w

d

p

s

a

l

2

A

g

t

a

t

s

s

i

p

d

t

i

3

t

s

3

t

g

a

T

g

b

t

c

o

w

b

t

p

b

t

p

a

p

s

R

a

m

i

h

(

t

p

l

w

i

t

t

t

w

(

o

c

a

u

r

p

a

w

f

i

p

s

3

i

c

tandard protocols such as HTTPS, since it does not require pay-

oad analysis. In addition, we do not require to define a-priori the

et of sensitive data that could be exfiltrated.

.2. Botnet detection

It is also interesting to compare the problem of APT detection

ith the botnet detection domain [31] . A botnet is a huge set of

istributed compromised hosts, controlled by one or more com-

and and control servers. Several approaches (e.g., [32–34]) have

een proposed in the literature in the last few years for detecting

nfected hosts and command and control servers related to botnet

ctivities. However, there are some core differences that prevent

he adoption of botnet methods in the APT domain.

First, the scale of the problem is completely different: while

otnets consist of thousands or millions of hosts, APTs are human-

riven attacks directed at a specific organization. Hence, botnet ap-

roaches that aim to detect similar behaviors in groups of hosts

e.g., through clustering of traffic features) cannot be applied in the

PT domain. This is because only a few internal hosts are infected,

nd command and control servers may use targeted protocols with

nly a subset of victim hosts. Hence, it is not possible to perform

road-range clustering analyses as those proposed in the botnet

etection literature in order to determine huge volumes of hosts

ith anomalous traffic patterns. Moreover, infection strategies are

ifferent: whereas APTs often use spear phishing and zero-day ex-

loits, botnets may try to replicate by themselves in a more aggres-

ive way. Our framework is specifically tailored to the APT domain,

nd takes into account the specific limitations and challenges re-

ated to the identification of suspicious hosts.

.3. Insider threat

Insider threat research [35] shares some similarities with the

PT problem as well. Indeed, an APT aims to take control of a le-

itimate host inside of an organization, and the attacker will try

o emulate normal behavior in order to avoid detection. However,

n important difference is that an insider may not need to exfil-

rate the data through a network, hence many approaches of in-

ider threat detection focus on host-based logs [36] and honeypot

trategies [37] instead of analyzing network traffic as it is done

n our approach. An important observation is that the framework

roposed in this paper could be easily integrated in insider threat

etection systems: its approach based on traffic analyses can con-

ribute significantly to existing insider threat solutions, although

nsider threat detection is not its primary objective.

. Scenario

In this section we introduce the lifecycle of modern APTs and

he main intuitions behind the proposed framework for ranking

uspicious hosts.

.1. APT lifecycle

APTs have peculiar characteristics that make their detection ex-

remely challenging [2] . Unlike traditional attacks, they are tar-

eted to a specific organization, often use zero-day vulnerabilities,

nd span over long periods of time (a “low-and-slow” approach).

hey attempt to simulate normal behaviors and the use of strate-

ies like social engineering complicates their detection even more.

Another peculiar aspect is that APTs are often conducted by cy-

ercrime organizations and not by individuals [1] . Each member of

he group has peculiar skills and knowledge that increases diffi-

ulty of detection for defenders and security analysts. For the sake
f simplicity, in the remainder of this paper we will refer to them

ith singular form: attacker .

We now discuss the APT characteristics that might be captured

y inspecting traffic data and security logs. In particular, we refer

o the definition of APTs proposed by [1] , that identifies five main

hases:

(1) reconnaissance;

(2) compromise;

(3) maintaining access;

(4) lateral movement;

(5) data exfiltration.

In the reconnaissance phase, the attacker aims to identify possi-

le entry points in the victim organization. From a traffic perspec-

ive, it may involve scan operations from external networks.

In the compromise phase, the attacker typically creates a spear

hishing email that contains an attachment that, if opened, exploits

 zero-day vulnerability to infect a victim machine, with the pur-

ose of infiltrating the target network. In particular, the malicious

oftware that installs on the victim host is often referred to as RAT :

emote Access Trojan, or Remote Administration Tool.

In the maintaining access phase, the RAT contacts a command

nd control server (CnC) of the attacker in order to receive com-

ands that must be performed on the target network. A peculiar-

ty of this phase is that the connection is initialized by the victim

ost and not by the attacker [1] . This occurs for two main reasons:

 i) connections initialized by internal hosts are usually allowed by

he organization firewall, and (ii) in this way the attacker can im-

rove his chances of not being detected. This is because a down-

oad from an external host would be extremely suspicious, and it

ould be easily detected by traditional security solutions such as

ntrusion detection systems [5] .

In the lateral movement phase, the attacker tries to gain access

o other hosts inside the target network with greater privileges

hat might be required to access valuable resources. For example,

he RAT may try to perform an internal scan on the observed net-

ork, or try to initialize new connections with other internal hosts

e.g., via SSH).

Finally, in the data exfiltration phase, the stolen data is sent to

ne or more remote servers controlled by the attacker. This phase

an be performed either in a burst , in which all data are exfiltrated

t once, or in a low-and-slow way, if the attacker wants to contin-

ously steal data. Some recent examples [3] of data exfiltration are

epresented by the Adobe Leak in 2013, in which 9 GB of encrypted

assword data were stolen, and Ashley Madison in 2015, in which

ttacker leaked their databases (the size of one of the databases

as about 40 GB).

Each phase has particular characteristics that may leak some in-

ormation that may be captured from traffic logs. In the upcom-

ng subsection, we show why it is extremely challenging to detect

hases of APTs with respect to traditional external attacks, with

pecial attention to the data exfiltration phase.

.2. Challenges in APT detection

There are several characteristics of the APT scenario that make

t extremely more challenging than any other external threat. We

an identify the following main motivations:

• Imbalanced data : APTs hide in weak signals among huge

amounts of data, and are hence very difficult to detect; un-

like botnets [31] , in APTs usually only a few hosts get infected,

hence command and controls (CnC) and victims are harder to

detect;

• Base-rate problem : since APTs are related to very rare events

that span over long periods of time, the number of false pos-

itives can easily be extremely high [38] ;

130 M. Marchetti et al. / Computer Networks 109 (2016) 127–141

Fig. 1. Distribution of the number of connections to external hosts initiated by internal hosts.

a

l

t

t

a

t

p

i

a

p

v

A

a

t

s

s

T

o

i

o

v

i

e

d

4

w

t

t

A

i

p

f

• Lack of publicly available data : this well-known shortcoming for

network security is even more critical when considering the

APT domain, since most companies that are victim of APTs have

no interest in releasing logs and details about such events;

• Use of encryption and standard protocols (e.g., HTTPS) prevents

efficacy of commonly adopted network security solutions, such

as signature-based intrusion detection systems [5] .

To better understand the issues related to APT detection, let us

consider the following example. An intuitive approach for detecting

communications with CnCs, RATs or possible attempts of data ex-

filtration would be to isolate and analyze connections with exter-

nal hosts that have been rarely contacted from the internal hosts of

an organization. This idea looks plausible because an APT attacker

does not want to be discovered, hence he will try to perform only

a limited number of communications.

However, analyses that we performed on a real and large net-

work environment consisting of about 10K hosts revealed that

most network statistics still follow heavy-tailed distributions. For

example, let us consider in Fig. 1 the distribution of the number of

contacts established by internal hosts toward external IP addresses.

The X -axis represents the number of contacts from internal hosts

to external IP addresses during one day. The Y -axis represents the

number of unique external IP addresses that were contacted ex-

actly x times. As an example, the first 3 bars in the histogram 1 (a)

show that about 2M external IP addresses were contacted only

once, about 1M were contacted twice, and about 220K were con-

tacted 3 times. Fig. 1 (a) and (b) report the same distribution on

a linear and logarithmic scale, respectively. Other network statis-

tics and results referring to different time granularities (e.g., hour,

week) are not reported for space reasons and correspond to sim-

ilar results. From these figures, we can conclude that most of the

external hosts are contacted only once or a few times.

This heavy-tailed nature of network statistics is partially related

to the recent widespread adoption of cloud providers , that are now

commonly used for remote storage and Web applications. By an-

alyzing the characteristics of the observed network environment,

we have verified that even during short periods of time (e.g., 1 h)

the variety of external addresses corresponding to content delivery

networks and cloud providers contacted by internal hosts is really

high. Moreover, the majority of external IP addresses are contacted

only a few times. This result was unexpected, because when con-

sidering the external addresses contacted by all internal hosts in

a large network environment, we would expect that the set of ex-

ternal addresses corresponding to cloud providers would be lim-

ited or at least contacted many times, since all the organization

internal hosts belong to the same geographical area. This high vari-

ability of range of IP addresses holds for different cloud providers
nd for different time windows (hour, day, month). A possible so-

ution would be to whitelist all cloud providers as benign , but if

he objective is the identification of APTs, this is not a viable op-

ion, since the attacker can easily create cloud accounts as CnCs or

s data exfiltration points [39,40] . Hence, the presence of an ex-

remely dynamic range of IP addresses related to different cloud

roviders further complicates APT detection.

This nature of the network statistics complicates the application

n the APT domain of several well-known statistical approaches for

nomaly detection [22] , such as:

• threshold-based approaches [41] , that would not work well be-

cause no effective threshold can be set on a heavy-tailed distri-

bution;

• clustering approaches [42] , that would likely find two main clus-

ters, one related to the head, and one related to the tail of the

distribution;

• boxplot rule [41] , that would not be effective for outlier detec-

tion as the underlying distributions are not Gaussian.

Since we are aware that traditional anomaly detection ap-

roaches are extremely difficult to adopt in modern network en-

ironments [43,44] , we propose an innovative framework in the

PT domain that allows to rank the hosts involved in suspicious

ctivities possibly related to APTs. The proposed approach models

he behavior of individual hosts as feature points in a multidimen-

ional space, and compares internal host statistics both with re-

pect to their past and with respect to all the other internal hosts.

he proposed framework then assigns a score to each internal host

n the basis of the suspiciousness of its movements and positions

n the feature space. This allows the security analysts to focus only

n the top- k suspicious hosts, instead of manually inspecting huge

olumes of data. In particular, in this paper we focus on the rank-

ng of hosts possibly related to data exfiltration activities, as a first

ffort of a more comprehensive framework for APT detection.

An overview and the details of the proposed framework will be

escribed in the upcoming sections.

. Framework overview

In this section, we present an overview of the proposed frame-

ork for ranking internal hosts possibly involved in data exfiltra-

ions as part of APTs. The final output is an ordered list of hosts

hat performed suspicious network activities possibly related to

PTs. In this way, security analysts can focus only on the manual

nvestigation of the top- k suspicious hosts.

The main objective of our framework is to overcome challenges

osed by APT detection through an innovative approach with the

ollowing characteristics:

M. Marchetti et al. / Computer Networks 109 (2016) 127–141 131

Fig. 2. Framework overview.

a

p

e

a

h

a

s

c

s

U

d

p

c

o

h

r

l

h

t

t

t

t

p

d

w

i

h

a

t

t

p

f

d

v

t

i

s

o

r

m

c

w

e

• unlike many existing APT detection solutions that require anal-

yses of huge amount of host-based logs, we focus on traffic in-

formation that can be easily collected through network probes

deployed in the observed network environment;

• to efficiently deal with high volumes of network traffic, we ex-

tract and analyze flow records ; this design choice achieves bet-

ter results both in terms of storage occupation and in terms of

computational cost for the analysis;

• unlike the majority of existing anomaly detection approaches

that focus mainly on network-wide statistics, we focus on indi-

vidual hosts and on comparative statistics to identify the hosts

that perform suspicious activities (i) with respect to their past

behavior, and (ii) with respect to the other internal hosts of the

organization;

• we propose a set of features that is tailored to identify hosts

possibly involved in data exfiltrations;

• moreover, the proposed ranking approach does not rely on deep

packet inspection, hence it can work even on encrypted traffic.

We refer to a scenario of an enterprise network consisting of

 few thousands of hosts. Fig. 2 reports the main phases of the

roposed framework:

(1) flow collection and storage;

(2) feature extraction;

(3) feature normalization;

(4) computation of suspiciousness scores;

(5) ranking.

We observe that the second, third and fourth phases can be ex-

cuted independently for each internal host, hence the proposed

pproach can scale to very large networks comprising more than

undreds of thousands of hosts by executing these phases in par-

llel.

Since raw traffic data would be impractical to analyze and

tore, the first phase aims to collect flow records [6,7] . Each record

ontains some information extracted from the IP header, such as

ource and destination addresses and ports, and protocol (e.g., TCP,

DP, ICMP). The adoption of flow records instead of raw traffic

ata brings several advantages in terms of performance for the ap-

roach:

• flow records can be efficiently stored and compressed, even

when they are collected for long periods of time (e.g., years);

• processing of flow records is computationally more feasible
than analyzing huge volumes of raw traffic data [6] .
Since in this paper we are interested in the ranking of suspi-

ious activities possibly related to data exfiltrations, we focus only

n outgoing traffic generated by internal hosts, that is, on the be-

avior of traffic flows directed from internal to external hosts. We

ecall that this choice is under the realistic assumption that all ma-

icious connections related to an APT will be initiated by internal

osts, as an APT attacker wants to evade detection [1] . Any connec-

ion initiated by external hosts to internal hosts not corresponding

o servers can be marked as suspicious by adopting traditional in-

rusion detection systems [5] .

The second phase of our framework involves extraction of fea-

ures that are relevant for data exfiltration. These features are com-

uted for each internal host every time interval T (e.g., once per

ay). Details, examples and motivations on the chosen features

ill be discussed in Section 5 . We highlight that feature extraction

s performed by a dedicated server that analyzes network flows,

ence this activity does not consume computational resources on

ny production host in the monitored network environment.

The third phase involves a normalization of the different fea-

ures, since each of them is characterized by a different heavy-

ailed distribution, hence they must be normalized for comparison

urposes. This is achieved through a normalization metric taken

rom [45] , that is specifically tailored to normalize heavy-tailed

istributions with different characteristics.

For each internal host and for each time t i , the fourth phase in-

olves the computation of statistics related to host movement in

he feature space, in order to evaluate suspiciousness by consider-

ng both magnitude and direction. In particular, our approach con-

iders three points in the feature space:

• the feature values of the host at present time, t i ;

• the centroid of the feature values of the same host in a histori-

cal window of size W , that is, between t i −1 −W

and t i −1 ;

• the centroid of the feature values of all hosts at time t i .

The historical window is used to represent the past behavior

f the hosts in the network. The direction of the movement with

espect to the recent past is also taken into account, so that move-

ents along uncommon directions are considered suspicious.

Finally, in the fifth phase the ranking algorithm assigns a suspi-

iousness score to each internal host, that allows it to be compared

ith all the other hosts. In particular, the level of suspiciousness is

valuated as a linear combination of:

• normalized distance of an internal host with respect to the cen-

troid of the feature space;

132 M. Marchetti et al. / Computer Networks 109 (2016) 127–141

a

e

b

b

h

r

w

p

b

i

b

c

s

i

a

e

c

a

A

t

t

e

c

t

m

c

s

i

o

f

s

m

h

c

a

i

l

a

s

f

a

d

5

o

o

t

n

r

t

b

n

b

m

Q
4

• percentage increment of the magnitude of the movement;

• unlikelihood of the direction of the movement, with respect to

the movements of all the internal hosts in the observed net-

work environment.

The result is a ranked list of suspicious hosts, that analysts can

use to focus only on the top- k suspicious ones.

The details for each of these phases will be discussed in the

upcoming sections, along with several examples and evaluations

on flow records collected from a real network consisting of about

10K hosts.

5. Feature extraction and normalization

In this section, we present and motivate a set of features that

we extract for each internal host with the purpose of detecting

possible data exfiltrations. Then, we discuss how the components

of each feature vector are normalized and compared.

5.1. Feature extraction

For each internal host in the observed network environment,

we extract a set of features that is tailored to detect data exfil-

trations through analysis of suspicious and rare movements in the

feature space.

Let us define H I and H E as the sets of internal and external hosts,

respectively. For each internal host h ∈ H I , a feature vector x t (h) is

computed that is defined as the following ordered tuple:

x t (h) =

(
x 1 t (h) , x 2 t (h) , . . . , x N t (h)

)
(1)

where x i t (h) corresponds to the value of the i -th component of the

feature vector at time t , with respect to internal host h . In partic-

ular, the feature vector values x i t (h) are computed every sampling

period T . This allows building a time series with the feature vec-

tor values for each internal host h ∈ H I . These series will be used

in the next phases for evaluating the movements of a host over

time. For the sake of simplicity, unless otherwise specified, in the

remainder of the paper we use a simplified notation in which we

omit h , that is: the feature vector of internal host h is referred to

as x t (h) = x t , with components x i t (h) = x i t .

Without loss of generality, in this paper we refer to a time

granularity T = 1 day, because we have verified that this is a good

granularity for several reasons, among which:

• APTs involve operations that could go on for days or

months [1] , hence excessively fine time granularities (e.g., min-

utes) could generate too much noise in the analysis;

• by producing a ranked list of suspicious hosts once per day, the

security analyst can easily focus on the top- k suspicious hosts

for manual investigation.

It is also possible to consider other time granularities, according

to the characteristics of the observed network environment and to

possible domain knowledge of the security analyst.

We now propose a set of features that are aimed to recognize

hosts involved in suspicious network activities possibly related to

the data exfiltration phase of an APT:

(1) numbytes : number of megabytes uploaded by internal hosts

to external addresses (i.e., possible points of exfiltration);

(2) numflows : number of flows (typically connections) to exter-

nal hosts initiated by internal hosts;

(3) numdst : number of external IP addresses related to a connec-

tion initiated by an internal host.

We now motivate the choice for each of these features.
numbytes allows us to monitor deviations of uploaded bytes,

s they may correspond to data exfiltrations. For example, if a host

xhibits a tenfold increase in the amount of uploaded bytes, it may

e involved in APT-related activities. In this paper, the amount of

ytes uploaded by internal hosts is represented in megabytes.

numflows is used to monitor data transfers initiated by internal

osts [1,2] . Exfiltrations are initiated by internal hosts for two main

easons: (i) outgoing connections are not blocked by most fire-

alls; (ii) connections initiated by external hosts would look sus-

icious and could be easily detected through traditional signature-

ased intrusion detection systems [5] .

numdst makes it possible to identify anomalous behaviors that

nvolve a change in the number of distinct destinations contacted

y each internal host. As an example, if the number of external IPs

ontacted within a given time window by an internal host remains

table while the number of uploaded bytes or connections greatly

ncreases, it may correspond to a data exfiltration or APT-related

ctivities.

We are aware that numflows and numdst are correlated to some

xtent: if the number of flows initiated by an internal host in-

reases greatly, the number of destinations is expected to increase

s well. The opposite is true for a decreasing number of flows.

lthough the machine learning community usually recommends

o choose uncorrelated features to maximize the information con-

ained in a feature vector [46] , we observe that we are not inter-

sted in a classification problem, but rather in identifying suspi-

ious movements in the feature space. Hence, we willingly choose

wo correlated features to capture the presence of internal hosts

oving in directions of the feature space that violate the expected

orrelation between numflows and numdst .

A representation of the distribution of these features with re-

pect to about 10K hosts of a real network environment is reported

n Fig. 3 . In particular, we have that Fig. 3 (a), (b) and (c) report

n the X -axis numbytes, numdst, and numflows, respectively, as a

unction of the number of internal hosts on the Y -axis in linear

cale. Fig. 3 (d), (e) and (f) report the same features on a logarith-

ic scale. We observe that for x > 100 all the features follow a

eavy-tailed distribution. As discussed in Section 3 , this compli-

ates the application of many anomaly detection algorithms, such

s threshold-based ones [22] .

A 3D representation of the proposed feature space is reported

n Fig. 4 , where the three axes represent the different features in

ogarithmic scale. It is possible to observe that, when considered as

 whole, the internal hosts cover several positions in the feature

pace. By monitoring their movements and their distances both

rom their history and from the centroid of the feature space, we

im to detect the most anomalous hosts, that might be related to

ata exfiltration activities.

.2. Feature normalization

To perform a fair comparison of the movements and positions

f the internal hosts, we have to normalize their distributions. One

f the most common normalization techniques is range normaliza-

ion [41] , that maps a distribution in a range between 0 and 1 by

ormalizing with respect to the maximum and the minimum of a

ange of values. However, we showed that in the considered con-

ext each feature is characterized by a different heavy-tailed distri-

ution (Fig. 3). Hence, out-of-scale values are frequent, and range

ormalization would yield poor results because most values would

e near 0.

To overcome this issue we adopt the two-sided quartile weighted

edian (QWM) metric [45,47,48] , that is defined as:

W M(D) =

Q . 75 (D) + 2 · Q . 50 (D) + Q . 25 (D)
(2)

M. Marchetti et al. / Computer Networks 109 (2016) 127–141 133

Fig. 3. Distribution of feature vectors for the whole internal hosts population.

numbytes

102

104

106

108

1010

1012

nu
m
ds
t

101

103

105

n
u
m
f
lo
w
s

101

102

103

104

105

106

107

Fig. 4. Example of representation of the internal hosts in the feature space with

logarithmic scale.

w

s

v

t

d

m

d

t

p

n

x

w

a

i

c

d

Fig. 5. Scale normalization with two-sided quartile weighted median.

p

p

c

t

d

u

h

here Q k (D) corresponds to the k quantile of the dataset D . We ob-

erve that this measure takes into account both the median of the

alues (Q .50), and the variance of the data, that is represented by

he first and third quartiles. This makes the QWM robust and in-

ependent of the distribution of the data, and also suitable to nor-

alize values of heavy-tailed distributions to similar central ten-

encies.

If we consider the feature vector x t at time t related to an in-

ernal host h , we can obtain the normalized feature vector x̄ t by

erforming on each component x i t , i ∈ { 1 , 2 , . . . , N} the following

ormalization:

¯

i
t =

x i t
QW M(X

i
t)

(3)

here X t is the set of feature vectors of all internal hosts h ∈ H I ,

nd X

i
t is the set of the i -th components. We observe that normal-

zation is performed with respect to the whole population to fairly

ompare the behaviors of all internal hosts.

The effectiveness of QWM normalization for our scenario is

emonstrated by Fig. 5 (a) and (b). Fig. 5 (a) represents through box-
lots [41] the distributions of the three features (numbytes is ex-

ressed in MB, while numdst and numflows are pure numbers),

omputed on a real network of about 10K hosts. Fig. 5 (b) shows

hat the scales and the major descriptive statistics of the different

istributions become comparable after QWM normalization. In the

pcoming sections we will assume that all the feature values x t
ave already been normalized.

134 M. Marchetti et al. / Computer Networks 109 (2016) 127–141

a

u

p

a

b

i

a

W

t

β

β

w

β

c

i

m

f

t

m

T

d

s

c

p

i

e

a

t

6

s

i

v

s

i

b

t

m

w

r

a

v

r

s

u

p

t
6. Computation of suspiciousness scores

Let us consider the normalized feature vector of the internal

host h at time t :

x t = (x 1 t , x
2
t , x

3
t) (4)

where x i t are numbytes (x 1 t), numdst (x 2 t) and numflows (x 3 t).

At each time t we compute for each internal host three suspi-

ciousness scores :

• s 1 t : distance from the centroid of the feature space;

• s 2 t : magnitude of the movement in the feature space;

• s 3 t : unlikelihood of movement direction .

Sections 6.1 , 6.2 and 6.3 present the details and motivations for

the computation of these scores. Finally, Section 6.4 discusses how

these three scores are combined to compute the final suspicious-

ness score of each internal host.

6.1. Distance from feature space centroid

First, we compute a score s 1 t that depends on the position of

the host h at time t with respect to all the other internal hosts.

The purpose is to determine whether a host at time t is situated

in an anomalous region of the multidimensional feature space.

Let us consider X t as the set of all positions of internal hosts in

the feature space at time t , that is:

X t = { x t (h) : h ∈ H I } (5)

We then define c (X t) as the centroid of the feature space at

time t . In particular, it is computed as:

c (X t) =

(∑

h x
1
t (h)

| X t | ,

∑

h x
2
t (h)

| X t | ,

∑

h x
3
t (h)

| X t |
)

, h ∈ H I (6)

where x i t (h) is the i -th component of the feature vector x t of inter-

nal host h ∈ H I , and | X t | represents the cardinality of X t . Hence, the

centroid is a feature vector resulting from the mean of the compo-

nents of the feature vectors associated with all the hosts.

Finally, for each internal host h we can compute the score s 1 t

as the Euclidean distance d t between the feature vector x t and the

centroid of the feature space c (X t):

s 1 t = d t (x t (h) , c (X t)) =

√

3 ∑

i =1

(
x i t (h) − c i (X t)

)2
(7)

The higher the value of s 1 t , the farther an internal host is from

the centroid of the feature space.

We observe that the feature vector normalization through the

QWM discussed in Section 5.2 is fundamental for a fair computa-

tion of the magnitude of d t in Eq. 7 . If the magnitude was com-

puted over non-normalized features, there would always be one

feature overwhelming the others (see also Fig. 5).

6.2. Magnitude of movement in the feature space

The purpose is to identify a distance metric that is suitable for

measuring suspiciousness of movements of internal hosts in the

feature space.

The movement of x t from t − 1 to t is represented as a distance

vector in a Euclidean space:

x t − x t−1 = (x 1 t − x 1 t−1 , x
2
t − x 2 t−1 , x

3
t − x 3 t−1) (8)

A drawback of this representation is that the magnitude of the dis-

tance vector will most likely be higher for internal hosts that are

far from the origin of the feature space. For instance, if a host usu-

ally uploads about 10GB of data per day with a standard devia-

tion of 1GB, then its distance vector would be always higher than
 host that normally uploads a few MB per day and then suddenly

ploads 100MB, although a tenfold increment would be really sus-

icious with respect to possible data exfiltrations.

Moreover, if we compare x t with respect to x t−1 only, we

re implicitly assuming that x t−1 is representative of the past

ehavior of the host. Such assumption may not be appropriate

n real networks. A time window is a more feasible approach

nd creates an evolving behavioral baseline for each internal host.

e define βt−1 (W) as the centroid of the set of features vec-

ors { x t−1 , . . . , x t−1 −W

} , where W is the size of the time window.

t−1 (W) is defined as:

t−1 (W) =

(
Q . 50 (∪ j x

1
j) , Q . 50 (∪ j x

2
j) , Q . 50 (∪ j x

3
j)

)
(9)

here j ∈ { t − W − 1 , . . . , t − 1 } , and each i -th component of

t−1 (W) corresponds to the median of the last W values of the

omponent x i t of feature vector x t .

We can now define a distance metric to measure movements

n the feature space. To take into account relative deviations and

ovements, we define the movement vector m t as the relative dif-

erence between the feature point x t and the centroid βt−1 (W) ,

hat is:

 t =

x t − βt−1 (W)

βt−1 (W)

=

(
x 1 t − β1

t−1 (W)

β1
t−1

(W)
,

x 2 t − β2
t−1 (W)

β2
t−1

(W)
,

x 3 t − β3
t−1 (W)

β3
t−1

(W)

)
(10)

his definition of m t allows to fairly determine how much a host

eviated from his previous positions.

Finally, the second score s 2 t is the magnitude of m t :

2
t = ‖ m t ‖ =

√

3 ∑

i =1

(
x i t − β i

t−1
(W)

β i
t−1

(W)

)2

(11)

The score s 2 t is important to determine how much a host has

hanged its position with respect to its recent history. For exam-

le, if a host suddenly increases his upload rate with respect to

ts past values, it may be exfiltrating information to one or more

xternal addresses. A similar risk exists if the number of external

ddresses contacted by that host suddenly decreases greatly while

he amount of megabytes uploaded remains stable.

.3. Likelihood of movement direction in the feature space

The magnitude of m t by itself is not sufficient to determine the

uspiciousness of a host movement in the feature space. This score

s designed to take into account the direction of the movement

ector. Uncommon directions (i.e., directions with low probability)

hould be considered more suspicious. For example, a movement

n a direction where the number of flows increases while the num-

er of destinations decreases is unusual.

The direction of m t related to an internal host is represented by

he unit vector ˆ m t that is defined as the following ratio:

ˆ t =

m t

‖ m t ‖

= (u t , v t , w t) (12)

here u t , v t and w t are the components of the unit vector ˆ m t .

In Fig. 6 , we report a real-world example of movement di-

ections related to a large network environment consisting of

bout 10K hosts. Each line in this figure represents a different unit

ector ˆ m t related to a different internal host, where the axes cor-

espond to u t , v t and w t . To improve readability, this figure only

hows 10 0 0 unit vectors that were randomly sampled among all

nit vectors (one for each active host) generated in a day. It is

ossible to observe that the unit vectors together form a sphere,

hus implying that several directions are explored at least once.

M. Marchetti et al. / Computer Networks 109 (2016) 127–141 135

ut

−1.0

−0.5

0.0

0.5

1.0

v t

−1.0

−0.5

0.0

0.5

1.0

w
t

−1.0

−0.5

0.0

0.5

1.0

Fig. 6. Representation in the (u t , v t , w t)-space of the unit vectors ˆ m t corresponding

to the movement directions within a day for a network with about 10K hosts.

H

u

T

t

i

t

e

ρ

ϕ

θ

w

a

t

ρ

r

h

o

t

a

n

s

c

I

m

2

u

a

a

t

c

r

θ

−180−135 −90 −45
0

45
90

135
180

ϕ

0

45

90

135

180

0

50

100

150

200

250

300

350

400

Fig. 7. Histogram of likelihood of directions ϕ and θ in the feature space related to

10K internal hosts.

b

r

v

3

t

l

w

s

i

t

t

m

a

w

b

fl

s

w

t

t

p

d

i

6

c

w

S

s

S

w

S
owever, we highlight that the distribution of unit vectors is not

niform, and some regions are much more populated than others.

his implies that movements in some directions are more common

han movements in other directions.

To understand the distribution of unit vectors of internal hosts,

t is convenient to use spherical coordinates [41] , that can be ob-

ained from the components u t , v t and w t through the following

quations:

=

√

u

2
t + v 2 t + w

2
t (13)

 = arccos

(

w t √

u

2
t + v 2 t + w

2
t

)

(14)

= arctan

(v t
u t

)
(15)

here ρ ≥ 0 is the length (magnitude) of the vector, 0 ° ≤ ϕ ≤ 180 °
nd −180 ◦ ≤ θ ≤ 180 ◦ are two angles that describe the direction of

he movement in the feature space. Since all unit vectors ˆ m t have

= 1 by definition, only two variables (ϕ and θ) are required to

epresent the direction of the unit vector.

Fig. 7 shows a histogram representing the number of internal

osts with a certain direction (ϕ, θ) on the Z -axis, and the values

f ϕ and θ on the other two axes. This figure refers to the statis-

ics of about 10K hosts, computed over a day. Similar results are

chieved for the other days in the observed environment, and are

ot reported only for space reasons.

From Fig. 7 , it is clear that most internal hosts move just in a

mall subset of the possible directions. Hence, movements in less

ommon directions represent a viable indicator of suspiciousness.

n particular, we can observe two space regions characterized by a

uch higher population.

To better understand the histogram in Fig. 7 , we report the

D projections for ϕ and θ in Fig. 8 (a) and (b), respectively.

One of the most populated regions in Fig. 7 corresponds to val-

es of ϕ between 110 ° and 135 ° and values of θ between −180 ◦

nd −130 ◦. This space region includes movement vectors for which

ll three features decrease. In particular, the highest spike within

his region represents vectors for which the three components de-

rease proportionally with respect to each other. Intuitively, this

egion captures all hosts for which the network activity (uploaded
ytes, number of destinations and number of flows) decreases with

espect to their recent history.

The other highly populated region in Fig. 7 is characterized by

alues of ϕ between 80 ° and 90 ° and values of θ between 0 ° and

0 °. This space region captures movements for which all three fea-

ures increase. In particular u t (corresponding to the number of up-

oaded bytes) increases more than v t (number of destinations) and

 t (number of flows), while v t and w t grow proportionally with re-

pect to each other. We can conclude that a considerable increase

n the number of uploaded bytes with respect to the previous his-

ory is quite common, while strong increases in the number of des-

inations or in the number of flows are less frequent.

The other less populated regions of Fig. 7 correspond to move-

ents in unlikely directions. In particular, for low values of both ϕ

nd θ the number of uploaded bytes and of destinations decreases,

hile the number of flows increases. Moreover, for high values of

oth ϕ and θ the number of uploaded bytes and the number of

ows decreases, while the number of destinations increases.

The third score s 3 t is defined as:

3
t = 1 − P r(̂ m t) (16)

here P r(̂ m t) represents the probability of a certain direction in

he feature space, computed as the value of a bin divided by the

otal number of internal hosts. Hence, 1 − P r(̂ m t) is its complement

robability , that represents the unlikelihood of moving in a certain

irection in the feature space. The higher s 3 t , the more suspicious

s the direction followed by the host.

.4. Computation of the final score

The final step of our framework for APT detection is to

ompute the final score for each host of the internal net-

ork by combining the three suspiciousness scores described in

ections 6.1 , 6.2 and 6.3 .

The final score S t is computed as a linear combination of scores

1
t , s

2
t and s 3 t . In particular, we adopt the following formula:

 t =

3 ∑

j=1

(
δ j

t · s j t

)
(17)

here δ j
t is a normalization weight associated with the j -th score.

ince the three scores are characterized by different bounds, scales

136 M. Marchetti et al. / Computer Networks 109 (2016) 127–141

Fig. 8. Likelihood of movement directions in the feature space with respect to ϕ and θ .

Table 1

Main characteristics of the observed network environment.

Characteristic Average value

Number of hosts ≈ 10,0 0 0 active internal hosts

Bitrate ≈ 600 Mbps (business hours)

Number of flows ≈ 140 millions records per day

Table 2

Main performance and storage requirements statistics of the proposed

framework related to the analysis of one day of data.

Statistic Time/storage required

[for one day of data]

Storage of flow records ≈ 1 .7 GB

Feature extraction and normalization ≈ 70 ÷80 s

Score computation and ranking ≈ 10 ÷20 s

e

d

i

b

n

T

b

p

W

o

u

a

m

r

a

and distributions, we normalize them by defining δ j
t through the

QWM metric [45,47] :

δ j
t =

∑

k,k 	 = j QW M(s k t) ∑

k QW M(s k t)
, k ∈ { 1 , 2 , 3 } (18)

We note that the QWM values related to the different scores are

normalized with respect to the sum of all QWM s.

The final output of our framework is a list of internal hosts

ranked in descending order with respect to the final score S t . Se-

curity analysts can use this list to prioritize manual and time con-

suming scrutiny of network and system activities of suspicious in-

ternal hosts.

7. Experimental evaluation

In this section we evaluate the performance and effectiveness

of the proposed framework by implementing and deploying a pro-

totype on a real and large network consisting of about 10K hosts.

In particular, we applied the framework to five months of network

flow records and report the most significant results.

The proposed evaluation aims to demonstrate three main as-

pects:

• feasibility of execution times and storage requirements for our

framework in a real operational environment;

• ability to identify hosts that exhibit suspicious behaviors com-

patible with data exfiltrations;

• sensitivity of the proposed approach with respect to different

classes of hosts and different sizes of exfiltrations.

Section 7.1 describes the testbed and the experimental setup,

along with details about execution times and storage requirements

of the proposed framework. In Section 7.2 we present some de-

tailed experimental results referring to different exfiltrations on a

particular day, whereas Section 7.3 presents a comprehensive anal-

ysis and comparison of the results of the proposed framework over

a five months period with respect to different classes of hosts,

different sizes of exfiltration, and the common ranking approach

used in traditional security solutions. Finally, Section 7.4 summa-

rizes and discusses experimental results.

7.1. Experimental testbed and framework performance

We first describe the experimental setting and the performance

and storage requirements of our approach.

We build a prototype of the proposed framework (Section 4)

using different programming languages and tools for each phase:
• the first phase is realized through the nprobe tool [49] that col-

lects flow records in the observed large network environment;

• the second and third phases are implemented in Go , where we

read and extract the features from the flow records generated

by nprobe;

• the fourth and fifth phases are realized in Python , where we ex-

tract, elaborate and rank the suspiciousness scores of each in-

ternal host.

The prototype is then deployed on a machine equipped with

ight 2.5 GHz cores, 128 GB of RAM and a 512 GB SSD hard drive.

Without loss of generality, we consider a sampling period T = 1

ay (i.e., the host ranking is performed once per day), and a histor-

cal window W = 14 days (i.e., for each host we build its behavioral

aseline on the basis of a two-week window).

In particular, the flow records have been collected in a real large

etwork environment (class B) with the characteristics reported in

able 1 .

We observe that the ranking is performed for all the 10K hosts

y analyzing over 140 millions flow records per day. The main

erformance and storage requirements referring to T = 1 day and

 = 14 days are reported in Table 2 .

We observe that hardware requirements and execution times

f the proposed solution are low and compatible with realistic

se cases. Moreover, even though the monitored network gener-

tes high volumes of network traffic, the storage space require-

ents make long-term logging and analysis feasible. In our envi-

onment, the storage occupation is of about ≈ 47 GB per month,

nd ≈ 500 GB per year.

M. Marchetti et al. / Computer Networks 109 (2016) 127–141 137

Table 3

Top-10 hosts ranked by suspiciousness score, exfiltration of 40 GB.

Host Score S t s 1 t s 2 t s 3 t

h̄ 6499 .72 6141 .14 6249 .63 0 .85

h 1 4,083 .40 636 .69 4,224 .00 0 .85

h 2 652 .88 7,258 .66 12 .55 0 .85

h 3 633 .70 7,173 .14 0 .32 0 .87

h 4 341 .73 10 .94 356 .72 0 .76

h 5 280 .47 3,166 .87 0 .41 0 .85

h 6 185 .51 2,005 .66 8 .32 0 .74

h 7 158 .17 1,224 .06 51 .84 0 .85

h 8 136 .76 1,522 .31 1 .79 0 .85

h 9 128 .50 1,441 .60 0 .59 0 .85

Table 4

Feature vector values and history for host h̄ , exfiltration of 40 GB.

Feature βt̄ −1 (W) x t̄

numbytes ≈ 6.4 MB 40,004 MB

numdst ≈ 185.7 168

numflows ≈ 1,982.4 1,457

7

b

r

p

h

(

o

a

t

1

E

r

t

fi

c

t

c

t

a

t

t

o

h

t

(

4

r

t

i

t

l

fi

Table 5

Feature values for hosts h 1 to h 9 at day t̄ .

Host numbytes numdst numflows

h 1 47,267 5,362 100,326

h 2 46,712 11 787

h 3 20,623 38,673 179,658

h 4 18,829 792 14,571

h 5 13,122 259 82,637

h 6 9,457 601 6,868

h 7 8,043 189 13,902

h 8 6,264 1,059 16,651

h 9 4,225 68 591

Table 6

Top-10 hosts ranked by suspiciousness score, exfiltration of 9 GB.

Host Score S t s 1 t s 2 t s 3 t

h 1 4,070 .95 637 .97 4,224 .00 0 .85

h̄ 1,466 .94 1,373 .19 1,405 .88 0 .85

h 2 709 .83 7,259 .93 12 .55 0 .85

h 3 690 .03 7,174 .41 0 .32 0 .87

h 4 340 .30 10 .54 356 .72 0 .76

h 5 305 .41 3,168 .14 0 .41 0 .85

h 6 201 .31 2,006 .93 8 .32 0 .74

h 7 167 .67 1,225 .34 51 .84 0 .85

h 8 148 .69 1,522 .44 1 .79 0 .85

h 9 139 .91 1,442 .87 0 .59 0 .85

Table 7

Feature vector values and history for host h̄ , exfiltration of 9 GB.

Feature βt̄ −1 (W) x t̄

numbytes ≈ 6.4 MB 9,004 MB

numdst ≈ 185.7 168

numflows ≈ 1,982.4 1,457

t

i

t

m

u

c

d

t

t

T

p

t

t

p

a

7

p

i

a

W

l

a

s

c

d

0
.2. Detection of artificially injected exfiltrations

We now consider the effectiveness of the proposed approach

y injecting data exfiltrations in the observed real network envi-

onment. The purpose of this experiment is to verify whether the

roposed approach is able to capture data exfiltrations despite the

uge noise related to the traffic statistics of 10K hosts.

To inject exfiltrations we first selected a random working day t̄

February 5th, 2016) and the host h̄ that in t̄ uploaded a number

f bytes equal to the median of the number of bytes uploaded by

ll internal hosts. We then executed two experiments that simulate

wo well known security incidents:

• exfiltration of 40 GB of data, approximately the same size of

one of the databases exfiltrated from Ashley Madison [3] ;

• exfiltration of 9 GB of data, approximately the amount of data

in the Adobe password leak case [3] .

We also observe that the main parameters are T = 1 day, W =
4 days. Moreover, the optimal number of bins for the score s 3 t from

q. 16 has been computed on the basis of the Freedman-Diaconis

ule [50] iterated over different days. In the observed environment

he optimal number of bins is 10 × 5 (ten bins for the θ axis and

ve for the ϕ axis).

Table 3 and Table 6 report the first 10 hosts ranked by suspi-

iousness score (for the 40 GB and 9 GB exfiltrations, respectively),

ogether with the values of each of the three partial scores. The

olumns of this table report the total scores S t and the details of

he individual scores s 1 t , s
2
t and s 3 t , respectively. The scores associ-

ted with the injected exfiltrations are represented in bold.

Moreover, in Table 4 we report the feature vector x t̄ of h̄ , and

he centroid βt̄ −1 (W) that represents its past behavior.

It is possible to observe that in this case our approach placed

he host h̄ at the first place, with a final score S t , well above those

f the other internal hosts. While this result may seem trivial, we

ighlight that for the day t̄ the top uploader was h 3 (ranked 4th),

hat uploaded more than 47 GB, and the second uploader was h 2
ranked 3rd), that uploaded about 46 GB. Host h̄ uploaded about

 MB, and after the injection reached about 40 GB. If hosts were

anked according to the number of uploaded bytes, h̄ would be in

he third position. On the other hand, using our approach host h̄

s ranked in the first place due to high values of all three par-

ial scores. In particular, the high value of s 1 is determined by the

arge amount of bytes uploaded by h̄ after having injected the ex-

ltration, that places h̄ far from the centroid of the feature space
hat represents all internal hosts. The high value of the score s 2
s caused by the sudden increase of uploaded bytes with respect

o the recent history of h̄ . Finally, the value of s 3 shows that the

ovement of h̄ with respect to its previous history followed an

ncommon direction, because the number of uploaded bytes in-

reased considerably while the number of destinations and flows

ecreased (as shown in Table 4).

For the sake of comparison, Table 5 reports the complete fea-

ure values of all the other hosts included in the top-10 (hosts h 1
o h 9).

Results related to the exfiltration of 9 GB are presented in

able 6 .

In this experiment host h̄ was ranked as the second most sus-

icious host, before h 2 that uploaded 46 GB. We observe that in

raditional security systems that commonly sort hosts according to

he number of uploaded bytes, h̄ would only achieve the seventh

osition. Table 7 reports the centroid and the feature vector for h̄

fter the injection of the 9 GB exfiltration.

.3. Sensitivity analysis and comparative evaluation

In this section we evaluate the effectiveness of the proposed ap-

roach for different classes of internal hosts. The following exper-

ments are not limited to a single day, but cover the whole set of

vailable data, which is about five months of network flow records.

e recall that the number of bytes uploaded by internal hosts fol-

ows a heavy-tailed distribution (see Fig. 3 (a) and (d)). To provide

 comprehensive evaluation, for each day we selected seven repre-

entative hosts, each characterized by an amount of uploaded bytes

orresponding to a specific quantile in the daily uploaded bytes

istribution. We consider the following quantiles: 0.01, 0.05, 0.25,

.50, 0.75, 0.95, 0.99. This choice allows us to evaluate the effec-

138 M. Marchetti et al. / Computer Networks 109 (2016) 127–141

Table 8

Percentage of instances in which the position by score computed with our framework is higher than the position ob-

tained with common-ranking approach.

Exfiltration size r 0.01 r 0.05 r 0.25 r 0.5 r 0.75 r 0.95 r 0.99

50 MB 99 .29% 99 .29% 97 .86% 85 .00% 43 .57% 35 .00% 32 .86%

100 MB 99 .29% 98 .57% 97 .86% 82 .86% 42 .14% 37 .14% 33 .57%

200 MB 99 .29% 100 .00% 97 .86% 87 .14% 50 .71% 37 .86% 34 .29%

500 MB 99 .29% 100 .00% 99 .29% 89 .29% 57 .14% 37 .86% 31 .43%

1 GB 99 .29% 100 .00% 99 .29% 92 .86% 67 .86% 38 .57% 30 .00%

2 GB 99 .29% 100 .00% 99 .29% 96 .43% 76 .43% 41 .43% 29 .29%

5 GB 99 .29% 100 .00% 99 .29% 97 .14% 84 .29% 43 .57% 32 .86%

10 GB 99 .29% 100 .00% 99 .29% 98 .57% 90 .71% 52 .86% 35 .71%

t

t

e

f

o

t

a

a

i

c

h

a

a

u

r

r

u

1

F

p

t

t

q

f

q

1

c

1

7

p

p

o

w

o

a
tiveness of the proposed approach for low uploaders, mid uploaders

and big uploaders .

After the selection, each representative host is chosen as source

of artificially injected exfiltrations. To evaluate the sensitivity of the

proposed approach, for each day and for each representative host

we injected data exfiltrations of different sizes: 50 MB, 100 MB,

200 MB, 500 MB, 1 GB, 2 GB, 5 GB and 10 GB. These experiments

allowed us to simulate the full spectrum of possible data exfiltra-

tions, from low-and-slow to burst data leaks. Finally, for each day

and for all combinations of the 7 representative hosts and the 8

different kind of data exfiltration, we computed the score for all

internal hosts and ranked them accordingly.

The most common approach for detecting data exfiltration is to

leverage standard network analysis tools and rank internal hosts

with respect to the number of uploaded bytes [51–53] . In the fol-

lowing, we refer to this method as common-ranking . To verify the

effectiveness of our approach we also compare against the results

of common-ranking.

The comparison is reported in Table 8 , where each column

refers to a different representative host; that is, r 0.01 represents

the host corresponding to 0.01-quantile, r 0.05 represents the host

corresponding to 0.05-quantile and so on. Each row denotes a dif-

ferent exfiltration size. Each cell represents the number of times

in which the ranking based on the proposed approach led to bet-

ter results (that is, a higher position) with respect to common-

ranking. As an example, the value 99.29% contained in the top-

left cell means that for 139 out of 140 days, the ranking based

on the score value resulted in a higher position than the one ob-

tained by common-ranking. Table 8 shows that the proposed ap-

proach leads to better ranking for all exfiltration sizes and for all

hosts up to the 0.5-quantile (column r 0.5). Columns r 0.75 and r 0.95

show mixed results, where the proposed approach fares better for

exfiltration sizes higher than 200 MB. As expected, column r 0.99 fa-

vors common-ranking, because high-uploaders are always among

the top positions in a ranking based on uploaded bytes, indepen-

dently of possible data exfiltrations.

This is a significant achievement because: (i) our solution per-

forms better for a majority of the internal hosts; (ii) it highlights

suspicious behaviors in hosts that would not have been considered

otherwise, because a ranking based on uploaded bytes is always

dominated by the minority of big uploaders.

Besides comparing the two different rankings, it is important

to analyze their results. Since both approaches prioritize hosts that

should undergo further time-consuming analysis, injected exfiltra-

tions should be associated to the highest priorities. Median ranks

computed through the proposed approach and through common-

ranking are presented in Tables 9 and 10 , respectively.

Each cell in these tables contains the median rank for a combi-

nation of a representative host and an exfiltration size, computed

over 140 days. As an example, the first cell in Table 9 that contains

value 42.50 means that an exfiltration of 50 MB for a host corre-

sponding to the 0.01-quantile of daily uploaded bytes has a posi-

t
ion higher or equal than 42.50 for at least half of the days. On

he other hand, Table 10 shows that the same host for the same

xfiltration size has a median rank of 353.

Since both the ranking approaches support security analysts in

ocusing on the most suspicious hosts, their results are effective

nly if hosts subject to data exfiltrations are ranked within the

op- k positions, where k depends on the amount of machines that

 security analyst can analyze and is constrained by available time

nd resources. In this evaluation, we consider two different scenar-

os: the first one represents an environment where resources allow

hecks on k = 50 machines each day (that is, about 0.05% of the

osts in the considered network); the second scenario represents

 more resource-constrained scenario in which an analyst can an-

lyze only k = 5 machines per day. In both cases, we consider as

seful all positions included in the top- k . In Tables 9 and 10 , useful

esults for the first scenario are highlighted in gray, while useful

esults for the second scenario are written in bold.

In the first scenario we can observe that our proposal generates

seful results for all exfiltration sizes (including those smaller than

 GB) for representative hosts up to 0.25-quantile and for r 0.99 .

or representative host r 0.5 (resp. r 0.75 and r 0.95), the proposed ap-

roach detects exfiltrations of at least 200 MB (resp. 500 MB). On

he other hand, common-ranking is never able to detect exfiltra-

ions smaller than 1 GB for any representative host up to 0.95-

uantile.

In the second scenario, the proposed approach clearly outper-

orms common-ranking for all representative hosts up to the 0.95-

uantile. In the considered network environment, a daily upload of

0 GB is enough to be ranked as the fifth highest uploader, hence

ommon-ranking is only able to identify exfiltrations of at least

0 GB.

.4. Summary of results

All experimental results demonstrate that the proposed ap-

roach is an improvement with respect to common-ranking. In

articular:

• it allows security analysts to quickly identify low-and-slow ex-

filtrations for the majority of internal hosts;

• for low- and mid-uploaders the proposed approach yields con-

sistently better results with respect to common-ranking;

• our approach is not biased towards big-uploaders that always

occupy the highest positions in the common-ranking, indepen-

dently of exfiltration activities;

• even low- and mid-uploaders can be classified as the most sus-

picious hosts.

From the perspective of an attacker, if the network is monitored

nly through common-ranking, an exfiltration of 500 MB per day

ould not be detected in most of the cases. On the other hand, if

ur approach is applied, an exfiltration of 500 MB per day would

lways be detected. To execute an exfiltration while avoiding de-

ection, an attacker has to carefully choose the host from which

M. Marchetti et al. / Computer Networks 109 (2016) 127–141 139

Table 9

Median position by score obtained with our framework.

Exfiltration size r 0.01 r 0.05 r 0.25 r 0.5 r 0.75 r 0.95 r 0.99

50 MB 42 .50 43 .50 45 .00 117 .50 202 .50 225 .00 50 .00

100 MB 23 .00 23 .50 25 .00 64 .00 125 .50 149 .00 49 .50

200 MB 11 .00 11 .00 12 .00 37 .50 72 .50 96 .00 46 .00

500 MB 5 .00 6 .00 6 .00 17 .00 32 .00 48 .50 36 .50

1 GB 3 .00 3 .00 3 .00 9 .50 17 .00 31 .00 29 .00

2 GB 2 .00 2 .00 2 .00 4 .50 9 .50 22 .50 20 .50

5 GB 1 .00 1 .00 1 .00 2 .00 5 .00 10 .50 11 .50

10 GB 1 .00 1 .00 1 .00 2 .00 3 .00 5 .00 7 .00

Table 10

Median position obtained with common-ranking approach.

Exfiltration size r 0.01 r 0.05 r 0.25 r 0.5 r 0.75 r 0.95 r 0.99

50 MB 353 .00 353 .00 350 .00 323 .00 255 .00 129 .50 38 .00

100 MB 164 .00 164 .00 164 .00 159 .00 142 .00 103 .00 37 .00

200 MB 97 .50 97 .50 97 .50 96 .00 92 .00 77 .00 33 .50

500 MB 54 .00 54 .00 53 .50 53 .50 53 .00 51 .00 26 .50

1 GB 34 .50 34 .50 34 .00 34 .00 33 .50 33 .00 20 .00

2 GB 18 .50 18 .50 18 .50 18 .50 18 .00 17 .00 14 .00

5 GB 10 .00 10 .00 10 .00 10 .00 10 .00 9 .50 8 .00

10 GB 5 .00 5 .00 5 .00 5 .00 5 .00 5 .00 5 .00

t

t

t

c

m

t

e

c

t

8

a

r

t

l

c

l

o

l

p

p

a

m

b

t

A

s

fl

A

m

h

s

b

H

R

[
he exfiltration takes place. The rational choice for the attacker is

o execute low-and-slow exfiltrations from mid-to-high uploaders

hat are above the 0.5-quantile and below the 0.99-quantile. This

hoice does not depend only on the uploads of a single compro-

ised machine, but also on the network traffic generated by all

he other hosts in the network. It is quite unlikely that even an

xpert attacker is able to gather this information. Hence, we can

laim that our proposal makes it extremely difficult to evade de-

ection.

. Conclusions

We have proposed the first framework that is able to identify

nd rank suspicious hosts possibly involved in data exfiltrations

elated to APTs. Our approach gathers and analyzes only network

raffic data. We propose a set of features that is specifically tai-

ored to detect possible data exfiltrations, and we define a suspi-

iousness score for each internal host. The final output is a ranked

ist of suspicious hosts possibly involved in data exfiltrations and

ther APT-related activities. The effectiveness of the proposed so-

ution has been proved by implementing a prototype that is de-

loyed on a real large network environment. The proposed ap-

roach is able to analyze about 140 millions of flows related to

pproximately 10,0 0 0 internal hosts in about 2 minutes. Experi-

ental results demonstrate the ability of the framework to identify

urst and low-and-slow exfiltrations. Our proposal paves the way

o novel forms of efficient and automated traffic analyses related to

PT activities. Future work includes the integration of correlation

ystems with respect to other network security assets, such as data

ows and alerts coming from intrusion detection systems.

cknowledgments

We thank the anonymous reviewers for their insightful com-

ents, that guided many modifications in the paper and that

elped in clarifying its scope and innovative results.

This research has been funded by the European Commis-

ion within the project “EUOF2CEN: European On-line Fraud Cy-

er Centre and Expert Network”. Funded by EU in agreement n.

OME/2014/ISFP/AG/CYBR/7172.
eferences

[1] R. Brewer , Advanced persistent threats: minimising the damage, Netw. Secur.
2014 (4) (2014) 5–9 .

[2] I. Jeun , Y. Lee , D. Won , A practical study on advanced persistent threats, in:
Computer Applications for Security, Control and System Engineering, Springer,

2012, pp. 144–152 .
[3] World most popular data breaches., 2015, (http://www.informationisbeautiful.

net/visualizations/worlds- biggest- data- breaches- hacks/) .

[4] Ponemon study: the economic impact of advanced persis-
tent threats (APTs)., 2015, (https://securityintelligence.com/media/

2014- ponemon- study- economic- impact- advanced- persistent- threats- apts/).
[5] D.E. Denning , An intrusion-detection model, IEEE Trans. Softw. Eng. (2) (1987)

222–232 .
[6] B. Li , J. Springer , G. Bebis , M.H. Gunes , A survey of network flow applications,

J. Netw. Comput. Appl. 36 (2) (2013) 567–581 .
[7] A. Sperotto , G. Schaffrath , R. Sadre , C. Morariu , A. Pras , B. Stiller , An overview

of IP flow-based intrusion detection, Commun. Surv. Tut. IEEE 12 (3) (2010)

343–356 .
[8] A. Lakhina , M. Crovella , C. Diot , Diagnosing network-wide traffic anomalies,

in: ACM SIGCOMM Computer Communication Review, vol. 34, ACM, 2004,
pp. 219–230 .

[9] G. Thatte , U. Mitra , J. Heidemann , Parametric methods for anomaly detection
in aggregate traffic, IEEE/ACM Trans. Netw. 19 (2) (2011) 512–525 .

[10] S.T. Zargar , J. Joshi , D. Tipper , A survey of defense mechanisms against dis-

tributed denial of service (DDOS) flooding attacks, Commun. Surv. Tut. IEEE 15
(4) (2013) 2046–2069 .

[11] N. Virvilis , D. Gritzalis , The big four-what we did wrong in advanced persistent
threat detection? in: Availability, Reliability and Security (ARES), 2013 Eighth

International Conference on, IEEE, 2013, pp. 248–254 .
[12] T.M. Chen , S. Abu-Nimeh , Lessons from stuxnet, Computer 44 (4) (2011) 91–93 .

[13] B. Bencsáth , G. Pék , L. Buttyán , M. Félegyházi , Duqu: Analysis, detection, and

lessons learned, ACM European Workshop on System Security (EuroSec), vol.
2012, 2012 .

[14] B. Bencsáth , G. Pék , L. Buttyán , M. Felegyhazi , The cousins of stuxnet: Duqu,
flame, and gauss, Future Internet 4 (4) (2012) 971–1003 .

[15] Kaspersky, Labs, “Red October” Diplomatic Cyber Attacks Inves-
tigation., 2015, (https://securelist.com/analysis/publications/36740/

red-october- diplomatic- cyber- attacks- investigation/).

[16] P. Giura , W. Wang , A context-based detection framework for advanced persis-
tent threats, in: Cyber Security (CyberSecurity), 2012 International Conference

on, IEEE, 2012, pp. 69–74 .
[17] J. De Vries , H. Hoogstraaten , J. van den Berg , S. Daskapan , Systems for detect-

ing advanced persistent threats: a development roadmap using intelligent data
analysis, in: Cyber Security (CyberSecurity), 2012 International Conference on,

IEEE, 2012, pp. 54–61 .

[18] S. Torii , M. Morinaga , T. Yoshioka , T. Terada , Y. Unno , Multi-layered defense
against advanced persistent threats (apt), FUJITSU Sci. Tech. J 50 (1) (2014)

52–59 .
[19] I. Friedberg , F. Skopik , G. Settanni , R. Fiedler , Combating advanced persistent

threats: from network event correlation to incident detection, Comput. Secur.
48 (2015) 35–57 .

20] B. Mukherjee , L.T. Heberlein , K.N. Levitt , Network intrusion detection, Netw.
IEEE 8 (3) (1994) 26–41 .

http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0002
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/)
https://securityintelligence.com/media/2014-ponemon-study-economic-impact-advanced-persistent-threats-apts/
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0012
https://securelist.com/analysis/publications/36740/red-october-diplomatic-cyber-attacks-investigation/
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0017

140 M. Marchetti et al. / Computer Networks 109 (2016) 127–141

[

[21] M. Roesch , et al. , Snort: lightweight intrusion detection for networks., in: LISA,
vol. 99, 1999, pp. 229–238 .

[22] V. Chandola , A. Banerjee , V. Kumar , Anomaly detection: A survey, ACM Com-
put. Surv. 41 (3) (2009) 15 .

[23] C.C. Zou , W. Gong , D. Towsley , Code red worm propagation modeling and anal-
ysis, in: Proceedings of the 9th ACM conference on Computer and communi-

cations security, ACM, 2002, pp. 138–147 .
[24] D. Moore , V. Paxson , S. Savage , C. Shannon , S. Staniford , N. Weaver , Inside the

slammer worm, IEEE Secur. Privacy 1 (4) (2003) 33–39 .

[25] P. Bhatt , E. Toshiro Yano , P.M. Gustavsson , Towards a framework to detect
multi-stage advanced persistent threats attacks, in: Service Oriented System

Engineering (SOSE), 2014 IEEE 8th International Symposium on, IEEE, 2014,
pp. 390–395 .

[26] J.R. Johnson , E. Hogan , et al. , A graph analytic metric for mitigating advanced
persistent threat, in: Intelligence and Security Informatics (ISI), 2013 IEEE In-

ternational Conference on, IEEE, 2013, pp. 129–133 .

[27] T. Sasaki , Towards detecting suspicious insiders by triggering digital data seal-
ing, in: Intelligent Networking and Collaborative Systems (INCoS), 2011 Third

International Conference on, IEEE, 2011, pp. 637–642 .
[28] J. Grier , Detecting data theft using stochastic forensics, Digit. Invest. 8 (2011)

S71–S77 .
[29] E. Bertino , G. Ghinita , Towards mechanisms for detection and prevention of

data exfiltration by insiders: keynote talk paper, in: Proceedings of the 6th

ACM Symposium on Information, Computer and Communications Security,
ACM, 2011, pp. 10–19 .

[30] Y. Liu , C. Corbett , K. Chiang , R. Archibald , B. Mukherjee , D. Ghosal , Sidd: A
framework for detecting sensitive data exfiltration by an insider attack, in: Sys-

tem Sciences, 2009. HICSS’09. 42nd Hawaii International Conference on, IEEE,
2009, pp. 1–10 .

[31] M. Feily , A. Shahrestani , S. Ramadass , A survey of botnet and botnet detec-

tion, in: Emerging Security Information, Systems and Technologies, 2009., IEEE,
2009, pp. 268–273 .

[32] G. Gu , P.A. Porras , V. Yegneswaran , M.W. Fong , W. Lee , Bothunter: Detecting
malware infection through ids-driven dialog correlation., in: Usenix Security,

7, 2007, pp. 1–16 .
[33] B. Stone-Gross , M. Cova , L. Cavallaro , B. Gilbert , M. Szydlowski , R. Kemmerer ,

C. Kruegel , G. Vigna , Your botnet is my botnet: analysis of a botnet takeover,

in: Proceedings of the 16th ACM conference on Computer and communications
security, ACM, 2009, pp. 635–647 .

[34] G. Gu , R. Perdisci , J. Zhang , W. Lee , et al. , Botminer: Clustering analysis of
network traffic for protocol-and structure-independent botnet detection., in:

USENIX Security Symposium, vol. 5, 2008, pp. 139–154 .
[35] A . Azaria , A . Richardson , S. Kraus , V. Subrahmanian , Behavioral analysis of in-

sider threat: a survey and bootstrapped prediction in imbalanced data, Com-

put. Soc. Syst. IEEE Trans. 1 (2) (2014) 135–155 .
[36] F.L. Greitzer , D.A. Frincke , Combining traditional cyber security audit data with
psychosocial data: towards predictive modeling for insider threat mitigation,

in: Insider Threats in Cyber Security, Springer, 2010, pp. 85–113 .
[37] B.M. Bowen , S. Hershkop , A.D. Keromytis , S.J. Stolfo , Baiting Inside Attackers

Using Decoy Documents, Springer, 2009 .
[38] S. Axelsson , The base-rate fallacy and the difficulty of intrusion detection, ACM

Trans. Inf. Syst. Secur. 3 (3) (20 0 0) 186–205 .
[39] N. Villeneuve, J. Bennett, Detecting APT activity with network traf-

fic analysis, Trend Micro Incorporated [pdf] Available at: http://www.

trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/
wp- detecting- apt- activity- with- network- traffic- analysis.pdf [Accessed May 31,

2016] (2012).
[40] F. Pierazzi , A. Balboni , A. Guido , M. Marchetti , The network perspective of

cloud security, in: Proceedings of the 4th IEEE Symposium on Network Cloud
Computing and Applications, 2015 .

[41] T.T. Soong , Fundamentals of Probability and Statistics for Engineers, John Wiley

& Sons, 2004 .
[42] J.A. Hartigan, Clustering Algorithms, John Wiley & Sons, 1975 . http://cds.cern.

ch/record/105051
[43] R. Sommer , V. Paxson , Outside the closed world: on using machine learning

for network intrusion detection, in: Security and Privacy (SP), 2010 IEEE Sym-
posium on, IEEE, 2010, pp. 305–316 .

44] F. Pierazzi , S. Casolari , M. Colajanni , M. Marchetti , Exploratory security analyt-

ics for anomaly detection, Comput. Secur. 56 (2016) 28–49 .
[45] N.G. Duffield , F.L. Presti , Multicast inference of packet delay variance at interior

network links, in: INFOCOM 20 0 0. Nineteenth Annual Joint Conference of the
IEEE Computer and Communications Societies. Proceedings. IEEE, vol. 3, IEEE,

20 0 0, pp. 1351–1360 .
[46] C.M. Bishop , Pattern Recognition and Machine Learning, Springer, 2006 .

[47] C. Canali , M. Colajanni , R. Lancellotti , Hot set identification for social network

applications, in: Computer Software and Applications Conference, 2009. COMP-
SAC’09. 33rd Annual IEEE International, vol. 1, IEEE, 2009, pp. 280–285 .

[48] M. Andreolini , S. Casolari , M. Colajanni , Models and framework for supporting
runtime decisions in web-based systems, ACM Trans. Web 2 (3) (2008) 17 .

[49] nProbe: An Extensible NetFlow v5/v9/IPFIX Probe for IPv4/v6., 2015, (http://
www.ntop.org/products/netflow/nprobe/) .

[50] D. Freedman , P. Diaconis , On the histogram as a density estimator: L 2 theory,

Probab. Theory Related Fields 57 (4) (1981) 453–476 .
[51] High-speed web-based traffic analysis and flow collection., 2016, (http://www.

ntop.org/products/traffic-analysis/ntop/) .
[52] Solarwind netflow traffic analyzer., 2016, (http://www.solarwinds.com/

netflow- traffic- analyzer.aspx/) .
[53] AlienVault unified security management., 2016, (http://www.solarwinds.com/

netflow- traffic- analyzer.aspx/) .

http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0032
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0032
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0032
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0032
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0032
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0035
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0035
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-detecting-apt-activity-with-network-traffic-analysis.pdf
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0038
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0038
http://cds.cern.ch/record/105051
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0040
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0040
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0040
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0041
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0041
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0041
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0041
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0041
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0042
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0042
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0042
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0043
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0043
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0044
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0044
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0044
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0044
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0045
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0045
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0045
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0045
http://www.ntop.org/products/netflow/nprobe/)
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0046
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0046
http://refhub.elsevier.com/S1389-1286(16)30163-3/sbref0046
http://www.ntop.org/products/traffic-analysis/ntop/)
http://www.solarwinds.com/netflow-traffic-analyzer.aspx/)
http://www.solarwinds.com/netflow-traffic-analyzer.aspx/)

M. Marchetti et al. / Computer Networks 109 (2016) 127–141 141

mmunication Technologies (ICT) in 2009. He holds a post-doc position at the Interdepart-

he University of Modena and Reggio Emilia. He is interested in intrusion detection, cloud
page: http://weblab.ing.unimo.it/people/marchetti/

torate School in Information and Communication Technologies (ICT) of the University of

egree in computer engineering from the same University in 2013. His research interests
age: http://weblab.ing.unimo.it/people/fpierazzi/

ing at the University of Modena and Reggio Emilia since 20 0 0. He received the Master

nd the Ph.D. degree in computer engineering from the University of Roma in 1992. He
rity and Safety (CRIS), and the Master in “Information Security: Technology and Law”.

tems, performance and prediction models, Web and cloud systems. Home page: http:

odena and Reggio Emilia, Italy. He received the Master Degree in computer engineering
 include network security and all aspects related to information security. Home page:
Mirco Marchetti received his Ph.D. in Information and Co

mental Research Center on Security and Safety (CRIS) of t
security and in all aspects of information security. Home

Fabio Pierazzi is a Ph.D. student at the International Doc

Modena and Reggio Emilia, Italy. He received the Master D
include security analytics and cloud architectures. Home p

Michele Colajanni is full professor in computer engineer

degree in computer science from the University of Pisa, a
manages the Interdepartmental Research Center on Secu

His research interests include security of large scale sys
//weblab.ing.unimo.it/people/colajanni/

Alessandro Guido is a Ph.D. student at the University of M
from the same University in 2012. His research interests

http://weblab.ing.unimo.it/people/guido/

http://weblab.ing.unimo.it/people/marchetti/
http://weblab.ing.unimo.it/people/fpierazzi/
http://weblab.ing.unimo.it/people/colajanni/
http://weblab.ing.unimo.it/people/guido/

	Analysis of high volumes of network traffic for Advanced Persistent Threat detection
	1 Introduction
	2 Related work
	2.1 APT detection
	2.2 Botnet detection
	2.3 Insider threat

	3 Scenario
	3.1 APT lifecycle
	3.2 Challenges in APT detection

	4 Framework overview
	5 Feature extraction and normalization
	5.1 Feature extraction
	5.2 Feature normalization

	6 Computation of suspiciousness scores
	6.1 Distance from feature space centroid
	6.2 Magnitude of movement in the feature space
	6.3 Likelihood of movement direction in the feature space
	6.4 Computation of the final score

	7 Experimental evaluation
	7.1 Experimental testbed and framework performance
	7.2 Detection of artificially injected exfiltrations
	7.3 Sensitivity analysis and comparative evaluation
	7.4 Summary of results

	8 Conclusions
	 Acknowledgments
	 References

