
Investigating Labelless Dri� Adaptation for Malware Detection
Zeliang Kan∗†, Feargus Pendlebury†‡∥, Fabio Pierazzi∗, Lorenzo Cavallaro†

∗King’s College London
†University College London

‡Royal Holloway, University of London
∥International Computer Science Institute

ABSTRACT

The evolution of malware has long plagued machine learning-based
detection systems, as malware authors develop innovative strate-
gies to evade detection and chase pro�ts. This induces concept drift
as the test distribution diverges from the training, causing perfor-
mance decay that requires constant monitoring and adaptation.

In this work, we analyze the adaptation strategy used by DroidE-
volver, a state-of-the-art learning system that self-updates using
pseudo-labels to avoid the high overhead associated with obtaining
a new ground truth. After removing sources of experimental bias
present in the original evaluation, we identify a number of �aws
in the generation and integration of these pseudo-labels, leading
to a rapid onset of performance degradation as the model poi-
sons itself. We propose DroidEvolver++, a more robust variant
of DroidEvolver, to address these issues and highlight the role
of pseudo-labels in addressing concept drift. We test the tolerance
of the adaptation strategy versus di�erent degrees of pseudo-label
noise and propose the adoption of methods to ensure only high-
quality pseudo-labels are used for updates.

Ultimately, we conclude that the use of pseudo-labeling remains
a promising solution to limitations on labeling capacity, but great
care must be taken when designing update mechanisms to avoid
negative feedback loops and self-poisoning which have catastrophic
e�ects on performance.

CCS CONCEPTS

• Computing methodologies→Machine learning; • Security
and privacy → Intrusion/anomaly detection and malware

mitigation.

KEYWORDS

Machine Learning; Malware Detection; Online Learning

1 INTRODUCTION

Machine learning-based malware detectors operate in hostile, dy-
namically changing environments. Malware authors utilize obfus-
cation [1, 24] and evasion techniques [4, 42, 60] to avoid detection,
develop new technologies to increase infectivity [55], and occa-
sionally adopt new paradigms with greater pro�t potential (e.g.,
ransomware [27]). Additionally, the underlying platform continues
to evolve, with new features, APIs, and programming practices
further distorting the boundary between goodware and malware.

This activity causes �uctuations in the data distribution, a phe-
nomenon known as concept drift [23, 25, 36], in which new examples
begin to di�er signi�cantly from those observed during the training
phase—i.e., the de�nition of what malware is changes over time.

Depending on the root cause, concept drift can be sudden and dra-
matic, or subtle and gradual [21], but nevertheless it violates the
i.i.d. assumption required by most classi�cation algorithms. This
violation causes an ongoing performance degradation that requires
constant monitoring and adaptation [41].

One promising direction for overcoming this issue is concept
drift adaptation, in which new knowledge is introduced to the
classi�er to reduce the cumulative prediction error. This class of
methodologies includes active learning [49, 50] and online learn-
ing [9, 38, 39] techniques. While generally e�ective at mitigating
performance degradation, these techniques require high-quality
labels to be available during test time, which are usually expensive
and time-consuming to obtain [35, 41].

A promising research direction that mitigates the high cost of la-
beling is weak supervision (e.g., semi-supervised learning), in which
a model is trained using both labeled and unlabeled data. One
branch of research focuses on the use of pseudo-labels to provide
noisy—but su�ciently accurate—labels for new data with which to
update the model [22, 30, 44]. An exemplary work in this area ap-
plied to Android malware detection is DroidEvolver [59], which
proposes updating an ensemble of online learners using its pre-
dicted labels as pseudo-labels to eliminate labeling costs altogether.

In this work, we critically examine such a strategy in greater
depth, using DroidEvolver [59] as a case study. First, we remove
sources of experimental bias present in the initial evaluation, ap-
plying DroidEvolver to a dataset of 129,728 apps where malware
is the minority class (~10% prevalence, as recommended in [41]).
We observe a catastrophic self-poisoning e�ect which causes per-
formance to degrade suddenly and signi�cantly. To explain these
e�ects, we identify several weaknesses in the system design relating
to the generation of pseudo-labels: assumptions on dataset diversity,
biased ensemble decision functions, and incorrect integration of
predicted labels. We propose DroidEvolver++, a new variant of
DroidEvolver, which addresses these issues, and we quantify the
e�ect of each change through ablation studies.

This leads us to further explore the degree to which pseudo-
labels might be useful in drifting security settings where the as-
sumptions required for semi-supervised learning may be violated.
We investigate the tolerance of DroidEvolver++ to label noise
to demonstrate how the accuracy of pseudo-labels hinders the ca-
pabilities of the model. Similarly, we show how methodologies
for ensuring high-quality pseudo-labels by thresholding on model
con�dence [30] and model uncertainty [44] can be applied to time-
aware malware detection.

Ultimately, we conclude that the use of pseudo-labeling is still
a promising solution to limitations on labeling capacity, but great
care must be taken when designing the update mechanism to avoid



negative feedback loops and self-poisoning. We urge caution when
using predicted labels alone as pseudo-labels for malware detection.

In summary, we provide the following contributions:
• We identify shortcomings in DroidEvolver [59], the current
state-of-the-art drift adaptation approach for malware detec-
tion (§3), and outline the lessons learned as well as proposing a
more robust and e�ective variant (§4).
• We further explore the use of pseudo-labels for malware detection
and the conditions under which they might still be a valuable
strategy for updating models in the face of concept drift. We show
that using a model’s predicted labels as pseudo-labels greatly
hinders its performance relative to the accuracy of its predictions,
but that methods to improve the quality of pseudo-labeling can
mitigate this to some degree (§5).
• To support future e�orts in malware drift adaptation, we release
the code for DroidEvolver++ and our implementation of alter-
native pseudo-label selection strategies (§8).

2 DRIFT ADAPTATION

In this section we provide some background on the problem of
concept drift (§2.1) and how the use of online learning has been
proposed to mitigate its impact (§2.2). Finally we give an overview
of DroidEvolver [59], the drift adaptation approach that forms
the core case study in our analysis (§2.3).

2.1 Concept Drift

Dataset shift is a common phenomenon in classi�cation tasks when
the joint distribution of inputs and outputs di�ers between training
and test time [43]. Dataset shift can come inmany forms: a change in
the feature distribution (covariate shift), a change in the prevalence
of a particular class (prior probability or label shift), or a change
in the class de�nition itself (concept shift). These shifts are often
intertwined and it can be di�cult to attribute performance loss to a
particular e�ect, so concept drift is often used as an umbrella term
for shifts in general, particularly within the security literature [e.g.,
15, 23, 46, 53]—we stick to this convention throughout this work.

Concept drift often a�ects real-world classi�er deployments,
either as a result of experimental bias during training and calibra-
tion [41] or due to a ‘natural’ change in the properties of the target
classes over longer periods (e.g., the problem of aging faces in facial
recognition [37]). Sources of drift in malware classi�cation can be
fairly benign, such as changes in market trends or new developer
APIs [62]. However, the main driving force of drift is the develop-
ment of new malware techniques to evade detection [1, 4, 42, 60],
increase infection rates [55], and generate greater pro�ts [27]. This
results in an evolution of malware over time, which reduces the
ability of classi�ers to recognize newer examples [3, 25, 35, 41].

2.2 Online Learning for Malware Detection

In the online learning setting, data is provided as a stream of obser-
vations in sequence, rather than as a batch of examples.

Typically, an online learner will make a prediction for each new
observation, and then subsequently update itself once the true label
becomes available [9]. Online learners are useful for adapting to
new patterns which makes them a useful candidate for tackling
concept drift as malware evolves over time.

Another advantage of online learning is that it allows a trained
detection system to be updated at a lower cost, as the system can
be partially retrained using the new data only, and many methods
reduce computation further (e.g., passive-aggressive classi�ers [14]
that update only when the model makes an incorrect prediction).

However, there are still limitations of online learners. In par-
ticular, online learners will gradually unlearn previously learned
information and are also susceptible to catastrophic interference [20,
26, 28, 34] in which past information is forgotten completely and
abruptly. Like all ML algorithms, they are also sensitive to the accu-
racy of new labels, but are speci�cally a�ected by whether labeling
capacity can keep up with the volume of the incoming unlabeled
data, in contrast to typical supervised batch learning where training
only occurs after all ground truth labels have been obtained.

Online learning has been proposed for the detection of An-
droid malware, most notably in the case of Casandra [38] and
DroidOL [39]. Both build on Weisfeiler-Lehman graph kernels [51]
to extract semantic features from the apps, while Casandra uses
a Con�dence Weighted algorithm [17] as its online learner and
DroidOL uses a Passive Aggressive algorithm [14]. In the remain-
der of the section we will explore a more recent work, DroidE-
volver [59], which departs from the previous methods by relying
on pseudo-labels for updates, rather than ground truth labels.

2.3 Adaptation Without Labels: DroidEvolver

Here we provide an overview of DroidEvolver [59] as a case study
in our analysis on the use of pseudo-labels for malware detection.

DroidEvolver employs an ensemble of �ve linear online learn-
ing models: Passive Aggressive (PA) [14], Online Gradient Descent
(OGD) [63], Adaptive Regularization ofWeight Vectors (AROW) [14],
Regularized Dual Averaging (RDA) [58], and Adaptive Forward-
Backward Splitting (Ada-FOBOS) [18]. Each uses a binary feature
space where 0 and 1 indicate the absence or presence of an API
call, respectively. API calls naturally re�ect the evolution of both
the Android framework and the apps themselves, and can be easily
extracted from bytecode using static methods [7, 16]. The ensemble
is trained using an initial dataset of labeled malware and goodware.

At test time, DroidEvolver uses the weighted sum of decision
scores as the ensemble decision function to aggregate the predic-
tions of the underlying models, however the predictions of aging
models are excluded from the sum. To measure whether a model is
aging or not, a �xed-length app bu�er is maintained which holds a
small set of apps that aim to be representative of the distribution
up to the current test period. A Juvenilization Indicator (JI) score
is calculated as the proportion of apps in the app bu�er, of the
same class, which have decision scores greater than the new test
object. If the JI score falls below or above a precalibrated lower and
upper threshold, respectively, then the model is marked as aging.
Note that this notion of dissimilarity for identifying drifting objects
is essentially the same as the nonconformity score (NCM) used
in Transcend [8, 23] and other methods derived from conformal
prediction theory [40, 57].

Once a model is marked as aging, an evolution is triggered to
revitalize the model. In this case, the update mechanism of the
underlying online learner is invoked on the new drifting object,
using the ensemble prediction as the label (i.e., the pseudo-label).



Additionally, the feature set is extended to include any previously
unseen features present in the new object. If either none or all of
the models are aging, no update will occur.

To evaluate DroidEvolver, the original authors perform a com-
prehensive series of experiments, testing the performance with and
without the presence of concept drift and measuring the overhead
of the evolution process. They use a dataset of 68,016 apps spanning
6 years with a roughly balanced class ratio (~51% malware).

Note that we do not mean to diminish the research contributions
of DroidEvolver, which was one of the �rst approaches to tackle
the trade-o� between performance over time and the e�ciency of
updating detectionmodels. To this end, DroidEvolver signi�cantly
outperformed contemporary state-of-the-art approaches and it is
a credit to the quality and openness of the work that we have
been able to able to extend it and use it as our case study. Our
intention is to build on DroidEvolver’s contributions by re�ning
our understanding of pseudo-labels in malware detection systems,
to foster future work in the area of drift adaptation.

3 IDENTIFYING CHALLENGES IN

PSEUDO-LABEL GENERATION

We assess the impact of experimental bias in the original evaluation
of DroidEvolver [59] and identify weaknesses in its design.

3.1 Experimental Setup

Dataset. We use a dataset consisting of 129,728 Android appli-
cations with 116,993 goodware and 12,735 malware (a ratio of ap-
proximately 9:1, as suggested by Pendlebury et al. [41]). Features
are binary, with 0 and 1 indicating the absence or presence of an
API call, respectively. We use the DroidEvolver feature extrac-
tion script to build the feature space. The sample is taken from the
public AndroZoo dataset [2] where each app is associated with
VirusTotal (VT) detection metadata, which is used to derive labels.
We follow examples in prior work [35, 41] and mark apps with
0 VT detections as goodware and apps with 4+ VT detections as
malware. We note that removing grayware may positively in�ate
the results [6] and this should be taken into account when interpret-
ing them. However, having a clean separation between malware
and goodware reduces natural label noise and helps us more con�-
dently control this variable to evaluate the systems’ tolerance to
label noise in later experiments (§5.2). The dataset spans three years.
For performing a time-aware evaluation, we use the �rst year as
training data and partition the remaining data into 24 test periods
of one month each.

Metrics. To measure overall detection performance we use Preci-
sion, Recall, and the 𝐹1 score. We also keep track of the drift rate, i.e.,
the proportion of new inputs in each test period that are identi�ed
as drifting. For DroidEvolver, drifting objects are those whose
decision score falls outside the JI thresholds. DroidEvolver does
not update models which are not aging, and models are marked as
aging when new inputs are marked as drifting with respect to that
model; therefore we are interested in maintaining a low drift rate
over time. When ground truth labels are used for model updates,
the drift rate re�ects the labeling cost. When pseudo-labels are used,
high drift rates increase the risk that no model in the ensemble

will correctly classify new objects which leads to decay. Note that
this metric relies on the ability of DroidEvolver to accurately
identify drifting objects which may be undermined as the system
deteriorates. In §6 we discuss the use of external drift detectors to
support a pseudo-labeling system.

Vanilla baseline (PassiveAggressive). To act as a simple base-
line and to demonstrate the presence of drift in the dataset, we use
the Passive-Aggressive classi�er [14] from the DroidEvolver en-
semblewithout performing anymodel updates (PassiveAggressive).
In this con�guration, the classi�er is equivalent to a linear support
vector machine [13]. To measure the severity of the drift, we use
Transcend [8, 23], a state-of-the-art approach to equip classi�ers
with a rejection option (as in abstaining classi�ers), due to its simi-
larity to the drift identi�cation mechanism used by DroidEvolver.
However, this is simply for the purpose of illustrating the drift; we
do not reject any of the identi�ed drifting points.

Threshold tuning. The pair of JI thresholds play a critical role in
distinguishing between drifting and non-drifting points. To tune the
thresholds, we initialize the model pool with the �rst eleven months
of training data and use the subsequent month as a calibration
set. We choose the JI threshold pair that performs the best on
the calibration set, which is 0.3 and 0.7 for the lower and upper
thresholds, respectively.

3.2 Assumptions on Data Distribution

Before analyzing the design of DroidEvolver itself, we �rst exam-
ine two assumptions regarding the data distribution, which may
di�er from a realistic setting.

Class balance. As shown by Pendlebury et al. [41], two forms of
experimental bias, spatial and temporal bias, are a common cause
for overin�ated results in machine learning-based malware experi-
ments. Temporal bias results when a dataset is temporally inconsis-
tent, e.g., when the training data does not precede the test data or
when classes are sampled from di�ering periods. Spatial bias refers
to when an unrealistic ratio of malware to goodware is used in the
test data. This is of particular importance in security, where the
positive class is often the minority class. Overrepresenting this class
leads to Precision being erroneously in�ated [41]. As demonstrated
in their time-aware evaluation, DroidEvolver’s evaluation is tem-
porally consistent and not a�ected by this experimental bias. We
thus assess the impact of spatial bias on the system’s performance.

We evaluate DroidEvolver and PassiveAggressive with two
di�erent dataset compositions. In the �rst, we downsample the
amount of goodware to achieve a 50/50 balance between classes. In
the second, we use our imbalanced dataset in its entirety.

Figures 1a and 1b show the performance of PassiveAggressive.
The system clearly su�ers from performance decay as the 𝐹1 score
gradually decays over time on both balanced (left) and imbalanced
(right) datasets. In both cases, the rate of drifting objects gradu-
ally increases, demonstrating the presence of concept drift in the
dataset. PassiveAggressive is sensitive to spatial bias [41], with
performance decay more pronounced on the imbalanced data. The
overall Precision in both cases is relatively stable, but Recall su�ers
greatly, indicating a large amount of False Negatives.



0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Precision Recall F1 Drift Rate

1 4 7 10 13 16 19 22

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
er

fo
rm

an
ce

(a) PassiveAggressive [14], 50%

1 4 7 10 13 16 19 22

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
er

fo
rm

an
ce

(b) PassiveAggressive [14], 10%

1 4 7 10 13 16 19 22

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
er

fo
rm

an
ce

(c) DroidEvolver [59], 50%

1 4 7 10 13 16 19 22

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
er

fo
rm

an
ce

(d) DroidEvolver [59], 10%

Figure 1: PassiveAggressive [14] without updates (top) vs.

DroidEvolver [59] (bottom) applied to test data with ~50%

malware (left column) vs. ~10% malware (right column).

The performance of DroidEvolver is shown in Figures 1c and 1d.
On the balanced dataset (left), performance quickly drops to an
𝐹1 score of ~0.65, while the Precision drops to ~0.50, equivalent
to random guessing in the balanced setting. The true base rate
represented in the imbalanced case (right) shows a starker picture,
with performance degrading severely in the �rst two months. In
2016 (i.e., from month 13), the model has high Recall, but this is an
artefact of the class ratio as the majority of samples are predicted as
malware, leading to low Precision that matches the malware base
rate of ~0.1.

From these results, we can see that DroidEvolver, like Pas-
siveAggressive, is indeed sensitive to spatial bias, which may have
overin�ated the results of the original evaluation. However, the
low performance even in the balanced setting suggests that other
factors may be at play, which we explore in §3.3.

Dataset diversity. We also reason brie�y about other aspects of
our dataset which may contribute to the lower performance. The
dataset in the original evaluation spans from 2011 to 2016 inclusive,
with roughly 5,000 malware and 5,000 goodware in each year. As
the feature set is augmented over time, the number of features
(i.e., API calls) grows from 14,327 to 52,001 features over the 6 year
period. Our dataset contains just over twice as many apps and
contains 105,092 distinct features in the 2014 training set alone.
Even in the shorter time frame, when testing ends in Dec 2016, the

number of recorded features has increased dramatically to 249,102,
�ve times larger than the original evaluation. We hypothesize that
the increased diversity and more abrupt onset of drift may make it
di�cult for DroidEvolver to adapt in time before negative feed-
back loops of the update mechanism take over. This highlights the
sensitivity of models to speci�c datasets and we advise testing on
more than one dataset where possible (although we recognize this
is infeasible in many security settings where obtaining high quality
datasets is challenging [6]).

3.3 Weaknesses in Pseudo-Label Generation

The previous experiment shows that DroidEvolver su�ers from
severe performance decay. As the non-updating PassiveAggressive
outperforms DroidEvolver, and the degradation occurs faster than
the naturally occurring drift illustrated in Figures 1a and 1b, we
hypothesize that the model poisons itself due to weaknesses in
the pseudo-label generation. Given this, we examine the update
mechanism of DroidEvolver and identify the following �aws in
addition to the erroneous dataset assumptions outlined in §3.2.

The ensemble is dominated by a subset ofmodels. The pseudo-
labels used for updating are derived from a weighted vote between
the non-aging models in the model pool, speci�cally

∑𝑀
𝑗=1𝑤 𝑗 · 𝑥𝑖

where𝑤 𝑗 is the weight vector of the 𝑗𝑡ℎ model in the pool and 𝑥𝑖
is the feature vector of the new test object. However, the di�erent
algorithms have very diverse ranges for the value of 𝑤 𝑗 · 𝑥𝑖 (i.e.,
their individual decision functions). Therefore, algorithms that nat-
urally produce outputs of a larger magnitude tend to dominate the
weighted voting. In our experiments, the OGD and Ada-FOBOS
classi�ers have a larger decision output than the other three algo-
rithms. This e�ectively decreases the model diversity in the ensem-
ble, which increases the risk of performance degradation once the
e�ectiveness of OGD and Ada-FOBOS drop.

Apps in the bu�er are replaced randomly, causing a skew

toward the majority class. DroidEvolver maintains a �xed-
length app bu�er, which contains a subset of apps representing the
distribution up to the current test period. The decision scores of
new inputs are compared to decision scores of apps in the bu�er
in order to calculate the JI score that measures whether a model
is aging. The bu�er is kept fresh by replacing apps each time a
new sample is received. However, apps are replaced at random
independent of their classes, which can cause apps in the bu�er
to skew towards a particular class. This problem is exacerbated
when a realistic class balance is used (see §3.2) as one class quickly
becomes underrepresented. In the extreme case, the bu�er may
contain only samples of a single class as all apps of the other class
have been replaced, which leads to errors in the JI computation.

The JI score of app bu�er apps is not kept updated. DroidE-
volver keeps track of the JI score for apps in the app bu�er. How-
ever, these scores are not kept updated, which means that the JI
score of new objects will be calculated using decision scores from
many past models. These scores may not be representative of the
current distribution, leading to incorrect decisions about which
objects are drifting. Ideally, the JI score should be recomputed using
fresh decision scores from each model.



The upper JI threshold causes high con�dence predictions

to be discarded. DroidEvolver uses both a lower and an upper JI
threshold to identify drifting examples. The intuition is that objects
which are very close or very far from the decision boundary with
respect to other objects are more likely to be anomalous and thus
drifting. While the lower threshold follows established results from
other areas (e.g., the uncertainty sampling strategy from active
learning [49] and rejection thresholds of Transcend [8, 23] rely on
the same intuition), we argue that the upper threshold is harmful to
the system. This is because it suggests that the points are clustered
in a ball (or ‘blob’) in the decision region, with the densest region
at the centroid representing the points most representative of the
class. In such a case, it is possible to enter the class region from one
boundary, pass through the densest region, and pass out through
the opposing boundary. While this is true for many non-linear clas-
si�ers (e.g., support vector machines using an RBF kernel [13]), for
the linear binary classi�ers used in the ensemble, this is not the
case. For these classi�ers, as points move away from the decision
boundary, they only become more representative of that class, i.e.,
the classi�er ismore con�dent of its prediction. The corollary of this
is that DroidEvolver marks models that produce high-con�dence
predictions as aging, thus discarding high-quality pseudo-labels
from the update mechanism, increasing its susceptibility to inaccu-
rate predictions and self-poisoning.

4 DROIDEVOLVER++

To address the previously described shortcomings we propose an
extension, DroidEvolver++. We hope that this will also provide a
more stable baseline for futurework to compare against. To evaluate,
we measure the Precision, Recall, 𝐹1 score, and drift rate, where the
drift rate is the proportion of new inputs identi�ed as drifting each
period (see §3.1).

We add a calibration step to the model pool initialization step.
This tuning step �nds the best JI threshold for detecting drifting
apps, as well as the ratio between goodware and malware in the
app bu�er. Algorithms 1 and 2 show the pseudo-code for these
operations. Note that we eliminate the upper JI threshold in order
to avoid discarding predictions with high con�dence.

We change the logic for the pseudo-label generation to use the
majority vote between all non-aging models (hard labels), instead
of the original ensemble decision function Σ𝑀

𝑗=1𝑤 𝑗 ·𝑥𝑖 . This ensures
speci�c classi�ers do not dominate the decision due to the range of
their decision function outputs.

We also �x the percentage of malware in the app bu�er by only
replacing apps with objects of the same class. This ensures the
bu�er does not become skewed towards a particular class or that a
class loses all representation entirely.

We recompute the JI scores of apps in the app bu�er each time a
model updates. This ensures the system does not make decisions
based on outdated information.

However, we recommend that, in the default con�guration at
least, ground truth labels are used in place of pseudo-labels for
the model update. While this increases the cost of maintaining the
system, it avoids the self-poisoning e�ects which render the models
unusable during periods of extreme drift. Nevertheless, labeling
pressure is still reduced as updates only happen when aging models

Algorithm 1: JI Thresholds Tuning
Result: (𝜏0, 𝜏1) Best JI Thresholds

1 𝑥𝑡𝑟𝑎𝑖𝑛 , 𝑥𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒 = split (𝑋𝑡𝑟𝑎𝑖𝑛);
2 models = modelpool_init (𝑥𝑡𝑟𝑎𝑖𝑛);
3 best_score = 0.0;
4 bu�er = bu�er_generation(𝑥𝑡𝑟𝑎𝑖𝑛 ,𝑚𝑜𝑑𝑒𝑙𝑠 , 𝑠𝑖𝑧𝑒 = 2000);
5 for 𝑖 ← 0 to 0.9 step 0.1 do
6 for 𝑗 ← 𝑖 + 0.1 to 1.0 step 0.1 do
7 𝐹1 = DroidEvolver (models, 𝑥𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒 , 𝑖 , 𝑗 , bu�er);
8 if 𝐹1 > best_score then
9 𝜏0, 𝜏1 = 𝑖 , 𝑗 ;

10 end

11 end

12 end

13 Return (𝜏0, 𝜏1);

appear in the model pool, and improving the stability of the system
overall should reduce the rate at which models age. As DroidE-
volver’s original strength is that it does not require ground truth
labels at all, we later propose an additional mechanism to improve
the stability of the pseudo-labels to some degree (§5.1) and explore
the settings in which pseudo-labels may remain e�ective (§5.2).

4.1 Tuning Class Ratio of the App Bu�er

The �xed-length app bu�er plays a vital role in distinguishing if a
test object is drifting. The composition of apps in the bu�er, and the
degree to which they capture the current distribution, a�ects how
the model is updated. In §3.2 we demonstrated that the random
replacement of apps in the bu�er of DroidEvolver can lead to
failure due to the class imbalance in the data. However, as DroidE-
volver++ ensures that apps only replace other apps of the same
class, we can further tune the ratio of malware to goodware in the
bu�er before performing further experiments. Note that while the
test dataset must follow a realistic malware-to-goodware ratio to
avoid spatial bias, the ratio in the app bu�er can be controlled.

To avoid data snooping, we use the �rst 11 months of 2014 as
the training data and the �nal month of 2014 as the calibration data.
After initializing the model pool, we perform a regular update on
the calibration set. We test di�erent malware rates in the range [0.1,
0.9] at increments of 0.1, following the procedure in Algorithm 2.

Figure 2 illustrates the performance of DroidEvolver++ for
di�erent ratios with the proportion of malware shown on the hori-
zontal axis. The performance is erratic and does not show a strong
trend. However, there appears to be some consistency when the
malware rate is furthest from the calibration class distribution, at
0.8 and 0.9. Similarly, the peak performance is at 0.1, the value
closest to malware rate in the calibration set, with an 𝐹1 score of
0.72. Given these results, we �x the malware rate in the app bu�er
at 0.1 to approximate the expected rate at inference time.

4.2 DroidEvolver++ Ablation Study

In this section, we perform an ablation study to isolate each of our
modi�cations and analyze their impact. We follow the same dataset



Algorithm 2: App Bu�er Class Ratio Tuning
Result: 𝑟 Best rate of malware in app bu�er

1 𝑥𝑡𝑟𝑎𝑖𝑛 , 𝑥𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒 = split (𝑋𝑡𝑟𝑎𝑖𝑛);
2 models = modelpool_init (𝑥𝑡𝑟𝑎𝑖𝑛);
3 best_score = 0.0;
4 for 𝑖 ← 0.1 to 0.9 step 0.1 do
5 bu�er = bu�er_generation(𝑥𝑡𝑟𝑎𝑖𝑛 ,𝑚𝑜𝑑𝑒𝑙𝑠 , ratio=𝑖);
6 𝐹1 = DroidEvolver (models, 𝑥𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒 , 𝜏0, 𝜏1, bu�er);
7 if 𝐹1 > best_score then
8 𝑟 = 𝑖;
9 end

10 end

11 Return 𝑟 ;

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

App Buffer Malware Rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

P
er

fo
rm

an
ce

Precision Recall F1 Drift Rate

Figure 2: Impact of di�erent malware-to-goodware ratios

in the app bu�er, DroidEvolver++ trained on the �rst 11

months of 2014 and calibrated on the �nal month of 2014.

and experimental setup as described in §3.1, considering only the
more realistic imbalanced dataset setting.

We �rst conduct a control experiment with all the extensions
of DroidEvolver++ activated. Then we disable each extension in
turn, and compare the performance to the control. Figure 3a shows
the performance of the control. The 𝐹1 score begins at 0.75 in the
initial test period, and remains relatively stable between 0.70 and
0.80 over the two-year period. Over the initial year, the 𝐹1 score rises
on average, peaking at 0.83—although this is somewhat expected
given the use of ground truth labels. While the performance drops
in the last three months, this is related to the very small number of
samples in these months, as observed in prior work [41].

The drift rate stays relatively stable, averaging 0.50. Although
much lower than DroidEvolver (cf. Figure 1d), this is a relatively
high rate as each drifting point must be manually labeled. This is
partially a cost of needing to maintain �ve models in the model
pool—even if a point is considered drifting only for a single model,
it must be labeled to update (and ‘de-age’) that model. In §5.1 we
explore strategies to improve this performance-cost trade-o�.

Modi�edWeightedVoting. Wedeactivate themodi�edweighted
voting and revert to the original Σ𝑀

𝑗=1𝑤 𝑗 · 𝑥𝑖 ensemble decision
function. As shown in Figure 3b, the 𝐹1 score does not change
much compared to the control, decreasing by 0.05 in the �rst few

months. However, the Precision drops considerably while Recall
rises, indicating that the model is over-predicting the positive class.

Additionally, the average drift rate increases slightly by 6.2%.
With the drop in 𝐹1 score, this suggests the JI comparison is marking
more samples as drifting (i.e., the models are aging faster). Similarly,
the performance degradation shows that the original weighted
voting generates more mistakes than the modi�ed majority vote
of DroidEvolver++. In this experiment, the ensemble decision
function is used to trigger the update, but is not used to produce a
label for the update itself. As a result, though the decision may be
incorrect, it will not poison the model pool for future predictions.

Upper JI Threshold. Next we reintroduce the upper JI threshold
that DroidEvolver++ removes. As before, we use ground truth
labels for updates. As shown in Figure 3c, the 𝐹1 score is the most
stable of the ablation settings. However, this is likely due to the
increase in the number of updates caused by many more exam-
ples being marked as drifting—~80% over all test periods. As stated
earlier, we aim to maintain as low a drift rate as possible to min-
imize the need for true labels. The average 𝐹1 score of 0.75, only
marginally di�erent to the control, con�rms our suspicion that the
majority of predictions which have a JI above the upper threshold
are actually high-con�dence predictions—i.e., updating the model
using their true label produces only minor gains in performance.

Updated App Bu�er JI Scores. Next we deactivate the recom-
putation of JI scores for apps in the app bu�er when the model
updates. Here we see little change compared to the control, with
comparable 𝐹1 score, but more stable Precision and Recall. As the
drift rate increases to a similar degree, we observe that there is
some trade-o� between the performance and the number of up-
dates (labeling cost), similar to what was observed when the upper
JI threshold was reintroduced.

App Bu�er Replacements. Similarly we deactivate the require-
ment that app bu�er replacements are class dependent. Still, ground
truth labels are used formodel updates in this experiment. As shown
in Figure 3e, the evolution process terminates completely at the
11th month. This is because all malware in the app bu�er has been
replaced by goodware, and JI computation is no longer possible. To
assess how typical this behavior is we repeat the experiment ten
times and observe this phenomenon in four of those trials. During
the ten months for which the updates succeed, the 𝐹1 score is lower
than that of the baseline on average, and the model exhibits the
same tendency to overpredict malware as with the weighted voting.

We conclude that random replacement of the app bu�er reduces
the reliability of the system, especially given the imbalance between
malware and goodware expected in the wild.

Ground Truth vs. Pseudo-Labels. Finally, we evaluate whether,
in light of the other improvements, DroidEvolver++ is able to
operate using pseudo-labels, which is the core contribution of the
original DroidEvolver. As shown in Figure 3f, the quality of the
pseudo-labels is simply not high enough for this. The 𝐹1 score drops
signi�cantly from 0.75 to 0.05 over 24months, staying below 0.30 for
most test periods. Precision decreases rapidly, and Recall increases
slowly as the model poisons itself with spurious pseudo-labels and
begins to overpredict the positive class. While the drift rate is very



0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Precision Recall F1 Drift Rate

1 4 7 10 13 16 19 22
Testing period (month)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

P
er

fo
rm

an
ce

(a) DroidEvolver++

1 4 7 10 13 16 19 22
Testing period (month)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

P
er

fo
rm

an
ce

(b) with original decision function

1 4 7 10 13 16 19 22
Testing period (month)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

P
er

fo
rm

an
ce

(c) with upper JI threshold

1 4 7 10 13 16 19 22
Testing period (month)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

P
er

fo
rm

an
ce

(d) with original pre-update JI scores

1 4 7 10 13 16 19 22
Testing period (month)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

P
er

fo
rm

an
ce

(e) with original random app replacement

1 4 7 10 13 16 19 22
Testing period (month)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

P
er

fo
rm

an
ce

(f) with pseudo-labels

Figure 3: Ablation study on DroidEvolver++ where each new component is in turn reverted back to its original form. All

experiments in this study use ground truth labels except that shown in Figure 3f which uses pseudo-labels only. For those that

use ground truth labels to perform updates, higher drift rates correspond to more updates and thus higher labeling costs.

low, averaging 0.25, the low performance indicates that this is due
to a failure of the system to recognize drifting objects.

This leads us to the conclusion that using a malware detector’s
own predicted labels as pseudo-labels is unlikely to be a viable
solution to the trade-o� between robustness to drift and labeling
cost. In the following, we aim to explore this notion in more depth
to analyze its strengths and limitations, and derive lessons learned.

5 THE LIMITS OF SELF-LEARNING IN

MALWARE DETECTION

The core strength of DroidEvolver is the ability to use its own pre-
dicted labels as pseudo-labels for self-learning and eschew manual
labeling entirely. However, our experiments in §3 and §4, show that
the model can rapidly poison itself with catastrophic e�ects on the
performance. Nevertheless, the proposal is still a tantalizing one, so
in this section we examine in more depth whether higher quality
pseudo-labels can be generated and if there are certain conditions
that allow for self-learning with pseudo-labels to be more e�ective.

In the following, we use the same experimental setup as described
in §3.1, initializing the model with data from 2014. However, due to
the rapid performance degradation, we focus on 2015 alone as the
test data. We use DroidEvolver++ exclusively to ensure the other
DroidEvolver weaknesses (§3) do not act as confounding factors.
As before, we measure Precision, Recall, 𝐹1 score, and the drift rate,
where the drift rate is the proportion of new inputs identi�ed as
drifting each period.

5.1 Uncertainty-Aware Pseudo-Label Selection

An important assumption for semi-supervised learning is that the
decision boundary lies in low-density regions [12]. To achieve this,

common pseudo-labeling methodologies aim to generate pseudo-
labels using high-con�dence predictions only [30, 52]. This intuition
is straightforward to visualize for linear classi�ers: high-con�dence
predictions are assigned to points furthest from the decision bound-
ary. Such methods should reduce noise in the pseudo-labels which
should mitigate—or at least delay—the onset of self-poisoning [22].

Recent work by Rizve et al. [45] extend this reasoning and ob-
serve that as many classi�ers are poorly calibrated (i.e., their output
probabilities do not align well with the true probabilities), con�-
dence alone is insu�cient as incorrect predictions may still be made
with high con�dence. To overcome this limitation, the authors pro-
pose selecting pseudo-labels which have high con�dence but also
low prediction uncertainty, as uncertainty can be interpreted as the
quality of the calibration [29].

Rizve et al. [45] do not prescribe a speci�c measure of con�dence
and uncertainty in their work, and the metrics they use are speci�c
to multiclass deep learning classi�ers, however we can adapt the
intuition to the ensemble of DroidEvolver++. Note that these mea-
sures are empirical approximations and should not be interpreted
as having strong theoretical guarantees (in contrast to equivalent
notions in Bayesian learning).

Con�dence. As the con�dence measure we use the average JI
score across the non-aging models in the pool. Recall that the JI
score is computed as the proportion of apps in the app bu�er, of the
same class, which have decision scores greater than the given object.
As the decision function for each model in the ensemble is simply
the distance from the hyperplane, and the app bu�er aims to be
representative of the distribution as a whole, we can use JI as a proxy
for distance from the hyperplane and thus con�dence. The reason
we cannot use the decision function outputs directly is because
they are scaled di�erently for each model (§3), whereas the JI is



0.0 0.2 0.4 0.6 0.8
Threshold

0.5

0.6

0.7

0.8

0.9

1.0

P
er

-c
la

ss
P

L
A

cc
u

ra
cy

0

2500

5000

7500

10000

12500

15000

17500

N
u

m
b

er
of

S
elected

P
oin

ts

(a) Con�dence Tuning

0.0 0.2 0.4 0.6 0.8
Threshold

0.5

0.6

0.7

0.8

0.9

1.0

P
er

-c
la

ss
P

L
A

cc
u

ra
cy

PL Accuracy (mw)

PL Accuracy (gw)

Selected Points
0

2000

4000

6000

8000

10000

12000

14000

N
u

m
b

er
of

S
elected

P
oin

ts

(b) Uncertainty Tuning

Figure 4: Tuning for con�dence and uncertainty thresholds.

1 2 3 4 5 6 7 8 9 10 11 12

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
er

fo
rm

an
ce

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

Drifted (confidence & uncertainty)

Drifted (confidence only)

Drifted (no selection)

Precision (confidence & uncertainty)

F1 (confidence & uncertainty)

F1 (confidence only)

F1 (no selection)

Recall (confidence & uncertainty)

Figure 5: DroidEvolver++ with higher quality pseudo-

labels selected using con�dence and uncertainty thresholds.

normalized, similar to the credibility metric of Transcend [8, 23]
and conformal prediction theory [57].

Uncertainty. As the uncertainty measure we use the standard
deviation of the JI score between all non-aging models. If there is
high uncertainty, we expect greater disagreement among models
in the ensemble. Conversely if there is low uncertainty, we expect
less disagreement. The motivation for using the JI score rather
than the decision score directly is the same as for con�dence. For
both metrics we exclude aging models from the calculation as the
decision of aging models is assumed to be untrustworthy.

Threshold Search. We aim to select pseudo-labels which are
obtained with con�dence above, and uncertainty below, a pair of
thresholds. However, by �ltering out low-quality pseudo-labels
we also reduce the number of examples used to update the model
which may also have adverse e�ects. The calibration process aims
to �nd a suitable balance between these two variables.

To determine these thresholds we �rst split the training set into
proper training set and calibration set at a ratio of 7:3 and use the
proper training set to initialize the ensemble and the calibration set
for the threshold search itself.

Figure 4 illustrates the threshold tuning process for both con�-
dence (left) and uncertainty (right). Each plot shows the Accuracy
of the pseudo-labels at di�erent thresholds. As the benign class is
the overwhelming majority, but is expected to exhibit less drift than
the malicious class, we show Accuracy for each class separately.
The gray line plot against the twin y-axis shows the number of
points selected at that threshold.

For both metrics we see the Accuracy of the benign class stay
above 98% throughout. For con�dence (Figure 4a), Accuracy in-
creases gradually for malware from 0.87 to 0.98 as the threshold
increases from 0.0 to 0.8. Above this threshold the Accuracy de-
creases signi�cantly, an artefact of the small number of selected
pseudo-labels at this range. As a compromise between the number
of selected pseudo-labels and the Accuracy, we select 0.5 as the
con�dence threshold. Note that this is stricter than the JI threshold
used by DroidEvolver++ (0.3).

Uncertainty tuning is shown in Figure 4b. The calibration results
show a similar trend although the distribution of selected pseudo-
labels is skewed towards higher uncertainty values. We choose 0.1
as the threshold as this maximizes the Accuracy for both classes
while retaining a reasonable number of selected pseudo-labels.

Results. Figure 5 illustrates the performance of DroidEvolver++
after the new thresholds are applied. The line without markers
shows the original 𝐹1 score of DroidEvolver++ using un�ltered
pseudo-labels. As discussed previously, performance drops below
0.40 after two months.

We also consider the 𝐹1 score when the con�dence threshold is
applied alone. The performance decay is still severe, stabilizing at
~0.35 𝐹1 score, but is slightly better than when there is no selection.
In the majority of test periods, the drift rate is reduced by at least
half of the original value, most notably in the �rst three months.

The other lines show the 𝐹1 score, Precision, and Recall when
both con�dence and uncertainty thresholds are applied. The decay
is delayed by a further month compared to using con�dence alone,
which shows that the uncertainty threshold is helpful in selecting
better quality pseudo-labels. However, after the third month, the
model begins to over-predict positive examples, with Recall staying
relatively stable but Precision degrading. The drift rate is further
reduced to less than 10% of all test objects for most test periods.

Notably, even though the performance decay is delayed when
pseudo-labels are �ltered this way, it is still eventually fatal. The
ensemble decision function still requires a majority of the non-
aging models to make correct predictions. However, it is likely that
due to drift, inputs will inevitably be misclassi�ed by the majority
of the ensemble, which will cause the pseudo-labeling strategy
to fail—that is, the low-density region of the decision boundary
is eroded due to concept drift. This situation is more common to
occur when the dataset distribution shifts suddenly [11].

Given this, we conclude that while there may be hope for self-
learning strategies in malware detection, it is likely better suited to
a supporting role as the presence of concept drift requires externally
generated up-to-date labels.



1 2 3 4 5 6

Test month

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
er

fo
rm

an
ce

(a) 0% noise

1 2 3 4 5 6

Test month

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) 10% noise

1 2 3 4 5 6

Test month

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) 20% noise

1 2 3 4 5 6

Test month

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(d) 30% noise

1 2 3 4 5 6

Test month

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(e) 40% noise

1 2 3 4 5 6

Test month

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
PL Accuracy

F1 Score

Drift Rate

(f) 50% noise

Figure 6: Exploration of pseudo-label error propagation in the �rst sixmonths of the DroidEvolver++ evaluation. The update

of the �rst month uses noisy ground truth labels where the true label is �ipped with probability 𝑝% for 𝑝 = 0, 10, 20, 30, 40, and
50. In the subsequent months, the update continues naturally using pseudo-labels. Additional plots are shown in Appendix A.

5.2 Tolerance to Pseudo-Label Noise

As we have seen, inevitable mistakes in the pseudo-labels can com-
pound and quickly lead to self-poisoning. Here we examine how tol-
erant DroidEvolver++ is to this pseudo-label noise and how errors
begin to propagate through the system and cause self-poisoning.
Equally, this helps us determine if there is a certain quality of
pseudo-labels for which a system can be self-sustaining.

In this experiment we use ground truth labels as pseudo-labels
for the very �rst update in month 1. However, to simulate a certain
proportion of incorrect pseudo-labels, whenever a model in the
ensemble needs to be updated, we �ip the label to be incorrect
with some probability 𝑝 . For example, a new object may appear
with ground truth benign and be marked as drifting by a model.
As the model is now considered aging, we must update it with
the new object, but �rst we will �ip the pseudo-label to malicious
with probability 𝑝 . After the very �rst update is completed, we
continue the test phase as normal, using the usual generated pseudo-
labels for months 2–6. Note that there is likely some naturally
occurring label noise in the dataset, i.e., where the ground truth label
is incorrect, but this should not signi�cantly a�ect our results [19,
47]. Additionally we have removed grayware from the dataset—apps
with 1–3 VirusTotal detections—to reduce this risk (see §3.1).

We repeat the experiment for di�erent probabilities 𝑝: 0%, 10%,
20%, 30%, 40%, and 50%. For each, the model pool is initialized on
the data from 2014 with the same starting app bu�er, and we test
using the �rst six months of 2015.

Figure 6 shows the performance of DroidEvolver++ for the
di�erent noise rates. The upper line depicts the Accuracy of the
pseudo-labels while the lower line shows the 𝐹1 score. The per-
formance values in the second month is particularly informative
for understanding how the initial pseudo-label error rate has af-
fected the update. The drift rate increases from 49% where there
is no error, up to 69% when half of the pseudo-labels are incorrect.
This signals the instability of the system as the pseudo-label qual-
ity decreases. Interestingly, the Accuracy of the pseudo-labels in
the second month is only minimally a�ected until the noise rate
reaches 40% at which point performance su�ers markedly. Notably,

even when there are no mistakes in the initial pseudo-labels, errors
compound at roughly similar rates so long as themajority of pseudo-
labels are correct. We see a di�erence once noise levels reach 50%,
at which point performance degrades almost immediately. This
�nding is further supported by additional results in Appendix A
which include values for 𝑝 = 60. Intriguingly, at higher noise levels
the model is able to recover to a small degree, with pseudo-label
Accuracy rising consistently for months 3–6—however it is not
enough for the 𝐹1 score to reach usable levels.

This result suggests that high-quality pseudo-labels alone are
insu�cient for generating further high-quality pseudo-labels in
later months. Small error rates quickly compound to produce larger
inaccuracies, which may explain why our pseudo-label selection
in §5.1 was unable to further delay performance decay. Given these
results it seems clear that manual intervention is needed tomaintain
the health of the system. However, we also observe that if the
quality of pseudo-labels were to be su�ciently high every month,
e.g., containing only 10% errors, the model would likely self-sustain
itself. This suggests that a small amount of high-quality pseudo-
labeled data may be able to augment manually labeled examples,
for example, when labeling capacity is stretched. Similarly, when
drift is shallow, as in the original DroidEvolver dataset, it is much
more likely that the error rate of pseudo-labels will remain low.

6 DISCUSSION

We note that there are still limitations in DroidEvolver++ which
would require moving further away from the DroidEvolver design.
Notably, the inclusion of passive-aggressive algorithms in themodel
pool may limit the ability to self-learn, as these algorithms will only
adjust their decision boundary when their prediction is incorrect,
which will not occur if they agree with the majority vote that
produces the pseudo-label.

Ultimately our results demonstrate that self-learningwith pseudo-
labels is intrinsically challenging in a drifting environment. If drift
is severe enough that a new instance is not correctly classi�ed by
any of the models in the ensemble, performance degradation will
be inevitable without additional mitigations.



While the challenges are di�cult to overcome, our results moti-
vate several promising research directions for using pseudo-labels
to combat concept drift in security tasks.

Alternative Pseudo-Labels. In this work we focus on the pseudo-
labels as de�ned by DroidEvolver, i.e., self-learning with the pre-
dicted labels produced by the model itself. However, other pseudo-
labels may be more stable and produce more promising results.
For example, in co-training, multiple learners are used which each
model the dataset in distinctly di�erent ways [5, 10]. Having dif-
ferent ‘views’ of the data makes the ensemble more robust to drift
in one particular representation—low quality pseudo-labels in one
‘view’ can be used to update a model that uses a di�erent ‘view’,
and vice-versa. Conversely, the models chosen by DroidEvolver
are extremely similar and may degrade in similar ways such that
they are not able to support one another.

Pseudo-Label Selection. We have shown that selecting higher
quality labels can reduce poisoning e�ects and labeling cost, how-
ever by �ltering pseudo-labels there is an inherent trade-o� between
the quality of the pseudo-labels and the amount available to use.
Similarly, while the use of con�dence and uncertainty thresholds
is an improvement over the baseline, these metrics are still tied
to the overall health of the system, similar to the pseudo-labels
themselves. Using an additional framework dedicated to identify-
ing drifting examples, such as CADE [61] or Transcend [8, 23],
may help maintain the stability of the app bu�er and may further
help in identifying and rejecting low-quality pseudo-labels.

Complementary Approaches. Pseudo-labeling may be useful
to complement other approaches such as active learning [49, 50].
Active learning is an extremely promising research avenue for
reducing labeling burden as it has been shown that labeling just
1% of examples with a strategy such as uncertainty sampling [31]
can signi�cantly delay the onset of drift [41]. Pseudo-labeling may
be used to augment a small amount of labeled data when labeling
burden is strained, while the manually labeled examples ensure
that the quality of pseudo-labels is kept high.

Robust Feature Spaces. Concept drift ultimately occurs in the
feature space, and may be more or less severe depending on how the
malware is represented [8]. As we have explored, pseudo-labels are
more e�ective when the error rate of the generated pseudo-labels
is low. As the error rate is a function of the severity of the drift,
this motivates the development of more robust feature spaces (e.g.,
APIGraph [62] and Tong et al. [56]) which may then facilitate the
successful use of pseudo-labels to reduce labeling cost.

7 RELATEDWORK

Malware detection over time. Groundbreaking work by both Al-
lix et al. [3] and Miller et al. [35] demonstrate how malware clas-
si�ers degrade over time and how training on “future” malware
can bias evaluations. Pendlebury et al. [41] build on this work and
identify new forms of temporal and spatial bias as well as exploring
mitigation for time-related performance decay, including incremen-
tal learning, active learning, and classi�cation with rejection (the
third being explored more thoroughly by Jordaney et al. [23] and
more recently by Barbero et al. [8]). One of the �rst methods to

perform a temporal evaluation, MaMaDroid [33] periodically re-
trains the model on new labeled data once it becomes unusable and
uses abstract APIs at the granularity of packages and families to
reduce the e�ect of drift resulting from new API calls. Similarly,
APIGraph [62] propose the augmentation of feature spaces with
semantic graph-based features, which are more robust to concept
drift. Our results from §5 motivate further research in this area of
robust feature spaces, as pseudo-labeling strategies can be used
more successfully when the drift is less severe and mistakes made
by the pseudo-labeling mechanism are limited.

Online learning formalware detection. Two closely related ap-
proaches to DroidEvolver are DroidOL [39] and Casandra [38]
which both use online learning to continually retrain the models.
Both use ground truth labels for model updates, but must update
with every new object, while DroidEvolver++ only updates mod-
els which are marked as aging. Furthermore, while DroidOL and
Casandra each rely on a single learner, DroidEvolver’s ensemble
shouldmitigate bias introduced by any single detectionmethod [59].
Additionally, neither implementations are publicly available which
makes it di�cult for new approaches to compare against them
without signi�cant engineering e�ort.

Drift identi�cation. An orthogonal research direction to drift
adaptation is drift identi�cation. For these approaches, identify-
ing drifting objects is the primary goal, after which they may be
quarantined, explained, or sent for downstream processing. Tran-
scend [8, 23] introduces the nonconformity measure on which
DroidEvolver’s JI calculation is based and uses it to reject low-
quality predictions. CADE [61] focuses on explaining drift, using
a distance-based metric to provide semantically meaningful ex-
planations for new drifting objects. BBSE [32] focuses on prior
probability shift (i.e., label shift) and is able to adjust classi�ers
to changes in the base rate. Also related are out-of-distribution
detectors for adversarial examples [40, 48, 54] although these are
largely con�ned to the computer vision domain.

8 AVAILABILITY

To support future e�orts in malware drift adaptation, we release the
code for DroidEvolver++ and our implementation of alternative
pseudo-label selection methods at https://s2lab.cs.ucl.ac.uk/drift.

9 CONCLUSION

This work examined the use of pseudo-labels for combating concept
drift in malware detection. Although pseudo-labels are a promising
approach for avoiding the overhead of manual labeling, we iden-
tify several �aws in the strategy employed by the state-of-the-art
drift adaptation technique, DroidEvolver [59]. Following this, we
further explore the conditions under which pseudo-labels might be
e�ective, investigating the impact of noisy labels and utilizing meth-
ods to ensure only high-quality pseudo-labels are used for updating
the model. Ultimately, we conclude that the use of pseudo-labeling
is still a promising solution to the overhead of manual labeling, but
that great care must be taken when designing the update mecha-
nism to avoid negative feedback loops and self-poisoning.

https://s2lab.cs.ucl.ac.uk/drift


ACKNOWLEDGEMENTS

We thank the reviewers and our shepherd, Kathrin Grosse, for their
constructive feedback. This research has been supported in part
by the UK EP/P009301/1 EPSRC research grant and by the China
Scholarship Council (CSC) of the Ministry of Education, P.R. China.

REFERENCES

[1] Hojjat Aghakhani, Fabio Gritti, Francesco Mecca, Martina Lindorfer, Stefano
Ortolani, Davide Balzarotti, Giovanni Vigna, and Christopher Kruegel. 2020.
When Malware is Packin’ Heat; Limits of Machine Learning Classi�ers Based on
Static Analysis Features. In Proc. of the Network and Distributed System Security
Symposium (NDSS).

[2] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. 2016.
Androzoo: Collecting millions of android apps for the research community. In
Proc. of the ACM International Conference on Mining Software Repositories (MSR).

[3] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. 2015.
Are Your Training Datasets Yet Relevant? - An Investigation into the Importance
of Timeline in Machine Learning-Based Malware Detection. In ESSoS (Lecture
Notes in Computer Science, Vol. 8978). Springer, 51–67.

[4] Hyrum S. Anderson, Anant Kharkar, Bobby Filar, David Evans, and Phil Roth.
2018. Learning to Evade Static PE Machine Learning Malware Models via Rein-
forcement Learning. CoRR abs/1801.08917 (2018).

[5] Giuseppina Andresini, Feargus Pendlebury, Fabio Pierazzi, Corrado Loglisci,
Annalisa Appice, and Lorenzo Cavallaro. 2021. INSOMNIA: Towards Concept-
Drift Robustness in Network Intrusion Detection. In Proc. of the ACM Workshop
on Arti�cial Intelligence and Security (AISec).

[6] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, Fabio
Pierazzi, Christian Wressnegger, Lorenzo Cavallaro, and Konrad Rieck. 2020. Dos
and Don’ts of Machine Learning in Computer Security. CoRR abs/2010.09470
(2020).

[7] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and Konrad
Rieck. 2014. DREBIN: E�ective and Explainable Detection of Android Malware in
Your Pocket. In Proc. of the Network and Distributed System Security Symposium
(NDSS). The Internet Society.

[8] Federico Barbero, Feargus Pendlebury, Fabio Pierazzi, and Lorenzo Cavallaro.
2020. Transcending Transcend: RevisitingMalware Classi�cationwith Conformal
Evaluation. CoRR abs/2010.03856 (2020).

[9] Avrim Blum. 1998. On-line algorithms in machine learning. In Online algorithms.
Springer, 306–325.

[10] Avrim Blum and Tom M. Mitchell. 1998. Combining Labeled and Unlabeled Data
with Co-Training. In Proc. of the ACM Conference on Learning Theory (COLT).

[11] Dariusz Brzezinski and Jerzy Stefanowski. 2013. Reacting to di�erent types of
concept drift: The accuracy updated ensemble algorithm. IEEE Transactions on
Neural Networks and Learning Systems 25, 1 (2013), 81–94.

[12] Olivier Chapelle and Alexander Zien. 2005. Semi-Supervised Classi�cation
by Low Density Separation. In AISTATS. Society for Arti�cial Intelligence and
Statistics.

[13] Corinna Cortes and Vladimir Vapnik. 1995. Support-Vector Networks. Machine
Learning 20, 3 (1995).

[14] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram
Singer. 2006. Online Passive-Aggressive Algorithms. Journal of Machine Learning
Research (JMLR) (2006).

[15] Amit Deo, Santanu Kumar Dash, Guillermo Suarez-Tangil, Volodya Vovk, and
Lorenzo Cavallaro. 2016. Prescience: Probabilistic Guidance on the Retraining
Conundrum for Malware Detection. In Proc. of the ACM Workshop on Arti�cial
Intelligence and Security (AISec).

[16] Anthony Desnos. [n. d.]. Androguard. Reverse engineering, Malware and good-
ware Analysis of Android applications. https://github.com/androguard. Accessed:
May 2019.

[17] Mark Dredze, Koby Crammer, and Fernando Pereira. 2008. Con�dence-weighted
linear classi�cation. In Proc. of the International Conference on Machine Learning
(ICML).

[18] John C. Duchi, Elad Hazan, and Yoram Singer. 2010. Adaptive Subgradient
Methods for Online Learning and Stochastic Optimization. In Proc. of the ACM
Conference on Learning Theory (COLT).

[19] B. Frenay and M. Verleysen. 2014. Classi�cation in the Presence of Label Noise:
A Survey. IEEE Transactions on Neural Networks and Learning Systems (2014).

[20] RobertM. French. 1999. Catastrophic forgetting in connectionist networks. Trends
in Cognitive Sciences 3, 4 (1999).

[21] João Gama, Indre Zliobaite, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid
Bouchachia. 2014. A survey on concept drift adaptation. Comput. Surveys (2014).

[22] Yves Grandvalet and Yoshua Bengio. 2004. Semi-supervised Learning by Entropy
Minimization. In Advances in Neural Information Processing Systems (NeurIPS).

[23] Roberto Jordaney, Kumar Sharad, Santanu K. Dash, Zhi Wang, Davide Papini, Ilia
Nouretdinov, and Lorenzo Cavallaro. 2017. Transcend: Detecting Concept Drift

in Malware Classi�cation Models. In Proc. of the USENIX Security Symposium.
[24] Jinho Jung, Chanil Jeon, MaxWolotsky, Insu Yun, and Taesoo Kim. 2017. AVPASS:

Leaking and Bypassing Antivirus Detection Model Automatically. In Black Hat
USA Brie�ngs (Black Hat USA). Las Vegas, NV.

[25] Alex Kantchelian, Sadia Afroz, Ling Huang, Aylin Caliskan Islam, Brad Miller,
Michael Carl Tschantz, Rachel Greenstadt, Anthony D. Joseph, and J. D. Tygar.
2013. Approaches to adversarial drift. In Proc. of the ACM Workshop on Arti�cial
Intelligence and Security (AISec).

[26] Ronald Kemker, MarcMcClure, Angelina Abitino, Tyler L. Hayes, and Christopher
Kanan. 2018. Measuring Catastrophic Forgetting in Neural Networks. In Proc. of
the AAAI Conference on Arti�cial Intelligence (AAAI).

[27] Amin Kharraz, Sajjad Arshad, Collin Mulliner, William K. Robertson, and En-
gin Kirda. 2016. UNVEIL: A Large-Scale, Automated Approach to Detecting
Ransomware. In Proc. of the USENIX Security Symposium.

[28] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Kumaran, and
Raia Hadsell. 2017. Overcoming catastrophic forgetting in neural networks.
Proceedings of the National Academy of Sciences (PNAS) 114, 13 (2017), 3521–3526.

[29] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. 2017. Sim-
ple and Scalable Predictive Uncertainty Estimation using Deep Ensembles. In
Advances in Neural Information Processing Systems (NeurIPS).

[30] Dong-Hyun Lee. 2004. Pseudo-Label: The Simple and E�cient Semi-Supervised
Learning Method for Deep Neural Networks. In Proc. of the ICML Workshop on
Challenges in Representation Learning (WREPL).

[31] David D. Lewis and William A. Gale. 1994. A Sequential Algorithm for Training
Text Classi�ers. In SIGIR. ACM/Springer, 3–12.

[32] Zachary C. Lipton, Yu-Xiang Wang, and Alexander J. Smola. 2018. Detecting and
Correcting for Label Shift with Black Box Predictors. In Proc. of the International
Conference on Machine Learning (ICML).

[33] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano De Cristo-
faro, Gordon J. Ross, and Gianluca Stringhini. 2017. MaMaDroid: Detecting
Android Malware by Building Markov Chains of Behavioral Models. In Proc. of
the Network and Distributed System Security Symposium (NDSS).

[34] Michael McCloskey and Neal J. Cohen. 1989. Catastrophic Interference in Con-
nectionist Networks: The Sequential Learning Problem. Psychology of Learning
and Motivation, Vol. 24. Academic Press, 109–165.

[35] Brad Miller, Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Rekha Bach-
wani, Riyaz Faizullabhoy, Ling Huang, Vaishaal Shankar, Tony Wu, George Yiu,
Anthony D. Joseph, and J. D. Tygar. 2016. Reviewer Integration and Performance
Measurement for Malware Detection. In Proc. of the Conference on Detection of
Intrusions and Malware & Vulnerability Assessment (DIMVA).

[36] Jose G. Moreno-Torres, Troy Raeder, Rocío Alaíz-Rodríguez, Nitesh V. Chawla,
and Francisco Herrera. 2012. A unifying view on dataset shift in classi�cation.
Pattern Recognition (2012).

[37] Stylianos Moschoglou, Athanasios Papaioannou, Christos Sagonas, Jiankang
Deng, Irene Kotsia, and Stefanos Zafeiriou. 2017. AgeDB: The First Manually
Collected, In-the-Wild Age Database. In CVPRWorkshops. IEEE Computer Society,
1997–2005.

[38] Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, and Yang Liu.
2017. Context-Aware, Adaptive, and Scalable Android Malware Detection
Through Online Learning. IEEE Transactions on Emerging Topics in Compu-
tational Intelligence (TETCI) (2017).

[39] Annamalai Narayanan, Yang Liu, Lihui Chen, and Jinliang Liu. 2016. Adaptive
and scalable Android malware detection through online learning. In Proc. of the
International Joint Conference on Neural Network (IJCNN).

[40] Nicolas Papernot and Patrick D. McDaniel. 2018. Deep k-Nearest Neighbors: To-
wards Con�dent, Interpretable and Robust Deep Learning. CoRR abs/1803.04765
(2018). arXiv:1803.04765

[41] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and
Lorenzo Cavallaro. 2019. TESSERACT: Eliminating Experimental Bias in Malware
Classi�cation across Space and Time. In Proc. of the USENIX Security Symposium.

[42] Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortellazzi, and Lorenzo Cavallaro.
2020. Intriguing Properties of Adversarial ML Attacks in the Problem Space. In
Proc. of the IEEE Symposium on Security and Privacy (S&P).

[43] Joaquin Quionero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D.
Lawrence. 2009. Dataset Shift in Machine Learning. The MIT Press.

[44] Mamshad Nayeem Rizve, Kevin Duarte, Yogesh Singh Rawat, and Mubarak
Shah. 2021. In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label
Selection Framework for Semi-Supervised Learning. In Proc. of the International
Conference on Learning Representations (ICLR).

[45] Mamshad Nayeem Rizve, Kevin Duarte, Yogesh S Rawat, and Mubarak Shah.
2021. In defense of pseudo-labeling: An uncertainty-aware pseudo-label selection
framework for semi-supervised learning. arXiv preprint arXiv:2101.06329 (2021).

[46] Royi Ronen, Marian Radu, Corina Feuerstein, Elad Yom-Tov, and Mansour Ah-
madi. 2018. Microsoft Malware Classi�cation Challenge. CoRR abs/1802.10135
(2018).

https://github.com/androguard
https://arxiv.org/abs/1803.04765


[47] Aleieldin Salem, Sebastian Banescu, and Alexander Pretschner. 2021. Maat:
Automatically Analyzing VirusTotal for Accurate Labeling and E�ective Malware
Detection. ACM Transactions on Privacy and Security (TOPS) (2021).

[48] Vikash Sehwag, Arjun Nitin Bhagoji, Liwei Song, Chawin Sitawarin, Daniel
Cullina, Mung Chiang, and Prateek Mittal. 2019. Better the Devil you Know: An
Analysis of Evasion Attacks using Out-of-Distribution Adversarial Examples.
CoRR abs/1905.01726 (2019).

[49] Burr Settles. 2009. Active Learning Literature Survey. Computer Sciences Technical
Report 1648. University of Wisconsin–Madison.

[50] Burr Settles. 2012. Active Learning. Morgan & Claypool Publishers.
[51] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn,

and Karsten M. Borgwardt. 2011. Weisfeiler-Lehman Graph Kernels. Journal of
Machine Learning Research (JMLR) (2011).

[52] Weiwei Shi, Yihong Gong, Chris Ding, Zhiheng Ma, Xiaoyu Tao, and Nanning
Zheng. 2018. Transductive Semi-Supervised Deep Learning Using Min-Max
Features. In ECCV (5) (Lecture Notes in Computer Science, Vol. 11209). Springer,
311–327.

[53] Anshuman Singh, Andrew Walenstein, and Arun Lakhotia. 2012. Tracking
concept drift in malware families. In Proc. of the ACM Workshop on Arti�cial
Intelligence and Security (AISec).

[54] Angelo Sotgiu, Ambra Demontis, Marco Melis, Battista Biggio, Giorgio Fumera,
Xiaoyi Feng, and Fabio Roli. 2020. Deep neural rejection against adversarial
examples. EURASIP Journal on Information Security 2020 (2020).

[55] Kimberly Tam, Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, and Lorenzo Caval-
laro. 2017. The Evolution of Android Malware and Android Analysis Techniques.
Comput. Surveys (2017).

[56] Liang Tong, Bo Li, Chen Hajaj, Chaowei Xiao, Ning Zhang, and Yevgeniy Vorob-
eychik. 2019. Improving Robustness of ML Classi�ers against Realizable Evasion
Attacks Using Conserved Features. In Proc. of the USENIX Security Symposium.

[57] Vladimir Vovk, Ilia Nouretdinov, Valery Manokhin, and Alexander Gammerman.
2018. Cross-conformal predictive distributions. In Proc. of the PMLR Workshop on
Conformal Prediction and its Applications (COPA), Vol. 91. PMLR.

[58] Lin Xiao. 2010. Dual Averaging Methods for Regularized Stochastic Learning
and Online Optimization. Journal of Machine Learning Research (JMLR) (2010).

[59] Ke Xu, Yingjiu Li, Robert H. Deng, Kai Chen, and Jiayun Xu. 2019. DroidEvolver:
Self-Evolving Android Malware Detection System. In Proc. of the IEEE European
Symposium on Security and Privacy (EuroS&P).

[60] Weilin Xu, Yanjun Qi, and David Evans. 2016. Automatically Evading Classi�ers:
A Case Study on PDF Malware Classi�ers. In Proc. of the Network and Distributed
System Security Symposium (NDSS).

[61] Limin Yang, Wenbo Guo, Qingying Hao, Arridhana Ciptadi, Ali Ahmadzade-
hand, Xinyu Xing, and Gang Wang. 2021. CADE: Detecting and Explaining
Concept Drift Samples for Security Applications. In Proc. of the USENIX Security
Symposium.

[62] Xiaohan Zhang, Yuan Zhang, Ming Zhong, Daizong Ding, Yinzhi Cao, Yukun
Zhang, Mi Zhang, and Min Yang. 2020. Enhancing State-of-the-art Classi�ers
with API Semantics to Detect Evolved Android Malware. In Proc. of the ACM
Conference on Computer and Communications Security (CCS).

[63] Martin Zinkevich. 2003. Online Convex Programming and Generalized In�nitesi-
mal Gradient Ascent. In Proc. of the International Conference on Machine Learning
(ICML).

A ADDITIONAL RESULTS FOR NOISY

PSEUDO-LABELS

In §5.2 we investigate how errors in the pseudo-label generation
compound to create self-poisoning e�ects leading to the system
becoming unusable. Here we o�er an alternative view by overlaying
the results at di�erent noise levels. We include an additional result
for a noise rate of 60% which further suggests that degradation is
expedited when the majority of pseudo-labels are incorrect.

B ADDITIONAL RESULTS WITH BALANCED

CLASS RATIO

For clarity, and to avoid introducing too many axes of comparison,
our experiments focus on the imbalanced class setting evidenced by
technical reports of 10% Android malware in the wild [41]. However,
there may be domains in which testing on data with a balanced
class ratio is a better approximation of the distribution in the wild.
Figure 8 shows a �nal comparison between DroidEvolver and
DroidEvolver++ applied the balanced setting described in §3.2.

1 2 3 4 5 6

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) 𝐹1 Score

1 2 3 4 5 6

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.00

0.10

0.20

0.30

0.40

0.50

0.60

(b) Pseudo-Label Accuracy

Figure 7: Pseudo-label error propagation in the �rst six

months of the DroidEvolver++ evaluation. The update of

the �rst month uses noisy ground truth labels where the

true label is �ipped with probability 𝑝% for di�erent values

of 𝑝. In the subsequent months, the update continues natu-

rally using pseudo-labels. See also Figure 6 for drift rates.

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Precision Recall F1 Drift Rate

1 4 7 10 13 16 19 22

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
er

fo
rm

an
ce

(a) DroidEvolver

1 4 7 10 13 16 19 22

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
P

er
fo

rm
an

ce

(b) DroidEvolver++

Figure 8: Final comparison between DroidEvolver and

DroidEvolver++ applied to the balanced setting described

in §3.2 with ~50% malware in the test set.


	Abstract
	1 Introduction
	2 Drift Adaptation
	2.1 Concept Drift
	2.2 Online Learning for Malware Detection
	2.3 Adaptation Without Labels: DroidEvolver

	3 Identifying Challenges in Pseudo-Label Generation
	3.1 Experimental Setup
	3.2 Assumptions on Data Distribution
	3.3 Weaknesses in Pseudo-Label Generation

	4 DroidEvolver++
	4.1 Tuning Class Ratio of the App Buffer
	4.2 DroidEvolver++ Ablation Study

	5 The Limits of Self-Learning in Malware Detection
	5.1 Uncertainty-Aware Pseudo-Label Selection
	5.2 Tolerance to Pseudo-Label Noise

	6 Discussion
	7 Related Work
	8 Availability
	9 Conclusion
	References
	A Additional Results for Noisy Pseudo-Labels
	B Additional Results with Balanced Class Ratio

