
POSTER: Enabling Fair ML Evaluations for Security

Feargus Pendlebury
∗

Royal Holloway, University of London

King’s College London

Fabio Pierazzi
∗

Royal Holloway, University of London

King’s College London

Roberto Jordaney

Royal Holloway, University of London

King’s College London

Johannes Kinder

Royal Holloway, University of London

Lorenzo Cavallaro

King’s College London

ABSTRACT
Machine learning is widely used in security research to classify

malicious activity, ranging frommalware tomalicious URLs and net-

work traffic. However, published performance numbers often seem

to leave little room for improvement and, due to a wide range of

datasets and configurations, cannot be used to directly compare al-

ternative approaches; moreover, most evaluations have been found

to suffer from experimental bias which positively inflates results.

In this manuscript we discuss the implementation of Tesseract, an

open-source tool to evaluate the performance of machine learning

classifiers in a security setting mimicking a deployment with typical

data feeds over an extended period of time. In particular, Tesseract

allows for a fair comparison of different classifiers in a realistic

scenario, without disadvantaging any given classifier. Tesseract

is available as open-source to provide the academic community

with a way to report sound and comparable performance results,

but also to help practitioners decide which system to deploy under

specific budget constraints.

KEYWORDS
Evaluation; Malware; Machine Learning; Experimental Bias

1 INTRODUCTION
Machine learning (ML) is now a widespread approach in security lit-

erature to tackle malware detection: from more traditional malware

such as Android, Windows, and PDF, to other malicious activities

such as botnet traffic, DGA domains, malicious URLs and harm-

ful Javascript. Given high performance with F1 of up to 95-99%,

achieved especially on Windows [6, 10] and Android [3, 9, 15]

platforms, it may seem that using machine learning for malware

detection is a solved problem. However, recent studies [1, 11, 12]

have shown that most evaluations suffer from experimental bias

that positively inflates results. Although security researchers bor-

rowed best practices from the machine learning community, these

may not be appropriate for a security setting. For example, k-fold
cross validation highly inflates results in a malware context, because

it integrates future knowledge about not-yet-seen malware into

∗
Equal contribution.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5693-0/18/10.

https://doi.org/10.1145/3243734.3278505

training [1, 11, 12]; when the training set is chosen with objects

that are temporally precedent to the testing objects, the classifier

performance degrades significantly due to concept drift [8]. In a

recent study [12], we have identified and systematized sources of

experimental bias that affect even recent top-tier papers (e.g., [3],

[9]): temporal bias (caused by violating temporal consistency of

train and test objects) and spatial bias (caused by using unrealistic

ratios of malware-to-goodware in the test set).

In this manuscript, we discuss the implementation of Tesser-

act [12], an open-source tool that we have made available to the

community to ensure fair, sound and comparable evaluations of

machine learning classifiers. The theoretical findings on which

Tesseract is based are described in [12]. Tesseract supports any

Scikit-learn and Keras classifier and feature space, and outputs

plots and metrics that consider performance decay over time due

to concept drift. This manuscript illustrates how to properly use

Tesseract, and clarifies how we engineered it to obtain a simple,

flexible tool that could be easily reused by other researchers.

We remark that we use (experimental) bias to refer to the details

of an experimental setting that depart from the conditions in a

real-world deployment and can have a positive impact (bias) on per-

formance. We do not intend it to relate to the classifier bias/variance

trade-off [5] from traditional machine learning terminology.

We encourage the adoption of Tesseract [12] as a way to per-

form fair, unbiased, and comparable experiments of ML classifiers

in security contexts to promote their evaluation in realistic settings.

2 BACKGROUND
Researchers have started to focus on understanding how to achieve

fair ML evaluations both in the security community [1, 11–13, 17]

and in the ML community [7, 16]. The first experimental bias found

in security is probably associated with the base-rate fallacy in in-

trusion detection [4]: in the presence of highly imbalanced datasets

(e.g., most traffic is benign) ROC curves, TPR and FPR have been

misleading metrics to evaluate system performance; this is because,

for an FPR of 0.1%, there may still be millions of false positives

with only thousands of true positives. Moreover, in imbalanced

datasets Accuracy is also a very misleading metric, which is dis-

couraged to report alone [7]. Some studies [13, 17] discuss incorrect

experimental setups and challenges in fair security evaluations,

but do not propose practical solutions on how to remove it. Other

work [1, 11] evidences that temporal consistency is crucial when

evaluating malware classifiers: the samples in the training set must

be temporally precedent to those in the testing set. In [12], we have

identified stricter temporal constraints and also that the testing

goodware-to-malware ratio must reflect the real world distribution,

or otherwise the results are misleading and possibly inflated.

https://doi.org/10.1145/3243734.3278505


X
y
t

Time-aware
Evaluation

Time-aware
SplitInputs

time

sc
or
e

Outputs

X
y
t

Inputs
Rebalance Fit Predict Reject Select

Pre-train Post-classification
Outputs

Testing period 1,…,N

TRAIN

TRAIN

TRAIN

Figure 1: Tesseract workflow and the evaluation cycle.

The aim of the Tesseract tool is to aid researchers in executing

bias-free evaluations of ML classifiers for security.While we present

the theoretical implications of such bias and constraints and how

to remove it in a full-length work [12], this manuscript focuses on

the detailed description of the implementation of the open-source

tool that we have released to the community.

3 SYSTEM OVERVIEW
Tesseract is implemented as a Python library, designed to integrate

easily with common workflows. In particular, the API design of

Tesseract is heavily inspired by and fully compatible with the

popular machine learning libraries Scikit-learn and Keras. As a

result, many of conventions and concepts in Tesseract should be

familiar to users of those libraries.

The goal of Tesseract is to ensure a fair, time-aware evaluation

of security classifiers. To achieve this, Tesseractwill enforce proper

temporal and spatial constraints [12] to prevent results becoming

affected by experimental bias. As classifiers grow in complexity

by combining multiple machine learning techniques, it becomes

increasingly likely that these constraints will be violated. Tesseract

aims to reduce the burden on the algorithm designer by keeping

track of these properties at each stage of the experiment pipeline.

Tesseract divides the workflow into stages (Figure 1). Firstly,

the dataset is ordered chronologically and divided into a single

training set and multiple testing sets. Next, execution enters the

time-aware evaluation cycle where each iteration of the cycle pro-

cesses the subsequent set of test objects. The evaluation cycle is

composed ofmultiple stages centered around the standard “training”

and “prediction” procedures. The stage preceding training enables

adjustments to be made to the training set while the later stages

allow for policies for reacting to the results before the cycle repeats.

Finally, once all test objects have been processed, the complete

results are consolidated and presented to the user.

Tesseract is composed in a modular fashion, to reflect the

different stages of the evaluation cycle. Different phases of the

cycle are represented by subclasses of Stage, which can them-

selves be subclassed to implement specific learning strategies. In-

stances of these subclasses can then be injected into the function

fit_predict_update() which will activate them appropriately

throughout the evaluation or deactivate them according to a given

schedule (a boolean array) attached to the superclass. Alternatively,
any component from the framework can be appropriately selected

and used in conjunction with other libraries or methodologies.

The following paragraphs highlight details of the implementa-

tion and further explore the core stages of Tesseract’s workflow.

Temporal Awareness.While a single training or testing object

is typically represented as a set of featuresX and an output variable,

or ground-truth, y, Tesseract also expects a timestamp t . This al-
lows Tesseract to enforce temporal consistency when partitioning

the dataset; e.g., for training, validation or testing. Tesseract parti-

tions testing sets further into testing periods. Each period contains

test objects covering a particular timespan specified in days, weeks,

months, quarters or years. All test periods are processed in chrono-

logical order and all are temporally posterior to the training set.

Time-aware operations are implemented in temporal.py which
handles the various corner cases and complications that occur when

working with time deltas. A notable function from the module is

time_aware_train_test_split() that performs the dataset par-

titioning mentioned previously given a time period length, granu-

larity and an optional start date.

Pre-train Stages. Before training the classifier it can be benefi-

cial to make adjustments to the training set. For example, altering

the class balance of the training set can be used to tune a classifier

in order to make it more or less receptive to a particular class [12].

This is especially useful in many security applications where the

class of interest—often malicious—is also the minority class.

The module spatial.py contains downsample_set() to reduce
the majority class until the desired class balance is achieved, as

well as search_optimal_train_ratio() to estimate the optimal

training balance for a particular target metric (e.g., F1). Custom
methods for these adjustments can be injected by subclassing the

Rebalancer class and overriding its alter() method which will

then be invoked before training on each cycle iteration. The func-

tion downsample_set() can also be used to ensure the class balance
of each testing period is realistic, as over-representing the class of
interest at test time, with respect to what would be expected dur-

ing deployment, can erroneously inflate reported performance. For

this, spatial.py also includes assert_class_distribution() to
check that class balance reflects a given ratio within some variance.

Train and Predict Stages. During training, the classifier esti-

mates the relationship between the features and the output vari-

ables. By default, Tesseract invokes the fit function on the given

model, however, custom algorithms can be injected into the fitting

stage to aid interoperability or for experimentation.

In the next stage, the classifier attempts to predict correct classes

for the test objects in the current period. Tesseract will search for

typical classification functions—prioritizing those which output raw

scores (e.g., distance from hyperplane) and thus are more flexible

for calculating metrics. However, custom decision functions can

also be passed to the framework to override the default behavior.

Post-classification Stages. In classification with reject option, a
classifier can choose not to classify a particular observation due to

low confidence (e.g., class probability below a certain threshold);

rejected objects are quarantined for manual inspection, and their

predictions are not included in the performance results. However,

Tesseract reports a quarantine cost associated with rejection, as

manual inspection is time consuming. Rising quarantine costs signal

the onset of concept drift and the aging of the classifier’s model [8].

Policies for rejection, while optional, can be implemented by sub-

classing the Rejector stage class and overriding the reject()



1 2 3 4 5 6 7 8 9 10 11 12

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
SVM

Recall (mw)

Precision (mw)

F1 (mw)

Recall (gw)

Precision (gw)

F1 (gw)

F1 (10-fold CV)

1 2 3 4 5 6 7 8 9 10 11 12

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
3NN

Figure 2: Plot generated byTesseract showing a comparison
of SVM and 3NN algorithms on Drebin feature space.

method. All Rejector subclasses will automatically keep track of

which predictions were discarded, which are used to quantify the

total quarantine cost.

Following the rejection stage, there is an opportunity to react

to the predictions of the classifier before the rebalancing and re-

training of the next evaluation cycle. For example, an active learn-
ing approach [14] can utilize a query strategy to select testing

objects to be manually relabeled, which are then integrated into

the training set before the next cycle. A popular query strategy is

uncertainty sampling, which selects objects that the classifier was

least certain about (e.g., those closest to the hyperplane in a binary

SVM), because they are most likely to make the decision boundaries

more precise once relabelled. Similarly to rejection, deriving ground

truths for test objects is associated with a relabeling cost. Active
learning techniques can be implemented in Tesseract by subclass-

ing the Selector stage and overriding the query() method. Sim-

ilarly to Rejector objects, all Selector stages will keep track of

costs they incur. Tesseract includes some useful implementations

for this stage, for example UncertaintySamplingSelector and

FullRetrainingSelector. This design should encourage further

experimentation with novel rejection and query strategies.

Metrics and Output. Tesseract maintains a set of metrics cal-

culated during each iteration of the evaluation cycle. These range

from the total positive and negative objects to metrics such as

Precision, Recall, and AUROC. As Tesseract aims to encourage

comparable and reproducible evaluations, we include functions for

visualizing classifier assessments and for measuring the classifier

robustness over a given time period with respect to each metric.

4 EXAMPLE
We present a case-study of Tesseract on Android malware analy-

sis. We consider applications from AndroZoo [2], an open dataset

which collects 6+ million apps with VirusTotal reports. We con-

sider a test-case with 50K apps from Jan 2015 to Dec 2016, with

10% malware and 90% goodware—which is the expected ratio of

malware-to-goodware in the wild [12]. We extract static features

according to the Drebin [3] algorithm, which relies on a linear

SVM; we perform grid-search to identify the best SVM hyperpa-

rameter, C=1. Figure 2 reports the output time-aware plots obtained

by training on 2015 (25K apps) and testing on 2016 (25K apps),

and compares the performance of SVM and kNN (k=3). The X -
axis reports the time periods, and the Y -axis different performance

metrics: F1-Score, Precision, Recall for both malware (strong col-

ors) and goodware (light colors). Figure 2 shows that SVM offers

a better Precision-Recall trade-off than 3NN, whereas 3NN has

similar F1 over time with respect to SVM, but a higher Precision

and a lower Recall. In both scenarios, the k-fold CV F1 (dashed

line) overestimates the classifiers’ performance. We also observe

that performance in detecting goodware does not drift much, and

remains consistently high in both algorithms.

5 CONCLUSIONS
We have presented in detail the system design and implementation

of the Tesseract [12] prototype, which can easily be used to re-

move temporal and spatial experimental bias when using machine

learning in security contexts. Tesseract supports any Scikit-learn

or Keras classifier and feature space, and is designed to be modular

and generic.

AVAILABILITY
We make Tesseract’s code and data available to the research com-

munity and practitioners. Please contact Lorenzo Cavallaro <lorenzo.

cavallaro@kcl.ac.uk> for access information.

ACKNOWLEDGMENTS
This research has been sponsored by the UK EP/L022710/1 and

EP/P009301/1 EPSRC research grants.

REFERENCES
[1] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon. Are Your Training Datasets

Yet Relevant? In ESSoS. Springer, 2015.
[2] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon. Androzoo: Collecting Millions

of Android Apps for the Research Community. In ACM MSR, 2016.
[3] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck. DREBIN: Effective

and Explainable Detection of Android Malware in Your Pocket. In NDSS, 2014.
[4] S. Axelsson. The Base-Rate Fallacy and the Difficulty of Intrusion Detection.

ACM Transactions on Information and System Security (TISSEC), 2000.
[5] C. M. Bishop. Pattern Recognition and Machine Learning. 2006.
[6] G. E. Dahl, J. W. Stokes, L. Deng, and D. Yu. Large-Scale Malware Classification

Using Random Projections and Neural Networks. In ICASSP. IEEE, 2013.
[7] H. He and E. A. Garcia. Learning From Imbalanced Data. IEEE TKDE, 2009.
[8] R. Jordaney, K. Sharad, S. K. Dash, Z. Wang, D. Papini, I. Nouretdinov, and

L. Cavallaro. Transcend: Detecting Concept Drift in Malware Classification

Models. In USENIX Security, 2017.
[9] E. Mariconti, L. Onwuzurike, P. Andriotis, E. De Cristofaro, G. Ross, and

G. Stringhini. MaMaDroid: Detecting Android Malware by Building Markov

Chains of Behavioral Models. In NDSS, 2017.
[10] Z. Markel and M. Bilzor. Building a Machine Learning Classifier for Malware

Detection. In Anti-malware Testing Research (WATeR) Workshop. IEEE, 2014.
[11] B. Miller, A. Kantchelian, M. C. Tschantz, S. Afroz, R. Bachwani, R. Faizullabhoy,

L. Huang, V. Shankar, T. Wu, G. Yiu, et al. Reviewer Integration and Performance

Measurement for Malware Detection. In DIMVA. Springer, 2016.
[12] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro. TESSERACT:

Eliminating Experimental Bias in Malware Classification across Space and Time.

ArXiv, 2018.
[13] C. Rossow, C. J. Dietrich, C. Grier, C. Kreibich, V. Paxson, N. Pohlmann, H. Bos,

and M. Van Steen. Prudent Practices for Designing Malware Experiments: Status

Quo and Outlook. In IEEE Symp. S&P, 2012.
[14] B. Settles. Active Learning Literature Survey. Synthesis Lectures on Artificial

Intelligence and Machine Learning, 2012.
[15] G. Suarez-Tangil, S. K. Dash, M. Ahmadi, J. Kinder, G. Giacinto, and L. Cavallaro.

DroidSieve: Fast and Accurate Classification of Obfuscated Android Malware. In

ACM CODASPY, 2017.
[16] A. Torralba and A. A. Efros. Unbiased look at dataset bias. In CVPR. IEEE, 2011.
[17] E. van der Kouwe, D. Andriesse, H. Bos, C. Giuffrida, and G. Heiser. Benchmarking

Crimes: An Emerging Threat in Systems Security. arXiv, 2018.

<lorenzo.cavallaro@kcl.ac.uk>
<lorenzo.cavallaro@kcl.ac.uk>

	Abstract
	1 Introduction
	2 Background
	3 System Overview
	4 Example
	5 Conclusions
	Acknowledgments
	References

